Colonized travelers contribute to the pandemic spread of resistant intestinal bacteria. This study is the first to show that antimicrobial use during travel predisposes to colonization by intestinal extended-spectrum beta-lactamase-producing Enterobacteriaceae. Travelers refrain from taking unnecessary antibiotics.
The cbsA gene of Lactobacillus crispatus strain JCM 5810, encoding a protein that mediates adhesiveness to collagens, was characterized and expressed in Escherichia coli. The cbsA open reading frame encoded a signal sequence of 30 amino acids and a mature polypeptide of 410 amino acids with typical features of a bacterial S-layer protein. The cbsA gene product was expressed as a His tag fusion protein, purified by affinity chromatography, and shown to bind solubilized as well as immobilized type I and IV collagens. Three other Lactobacillus S-layer proteins, SlpA, CbsB, and SlpnB, bound collagens only weakly, and sequence comparisons of CbsA with these S-layer proteins were used to select sites in cbsA where deletions and mutations were introduced. In addition, hybrid S-layer proteins that contained the N or the C terminus from CbsA, SlpA, or SlpnB as well as N-and C-terminally truncated peptides from CbsA were constructed by gene fusion. Analysis of these molecules revealed the major collagen-binding region within the N-terminal 287 residues and a weaker type I collagen-binding region in the C terminus of the CbsA molecule. The mutated or hybrid CbsA molecules and peptides that failed to polymerize into a periodic S-layer did not bind collagens, suggesting that the crystal structure with a regular array is optimal for expression of collagen binding by CbsA. Strain JCM 5810 was found to contain another S-layer gene termed cbsB that was 44% identical in sequence to cbsA. RNA analysis showed that cbsA, but not cbsB, was transcribed under laboratory conditions. S-layer-protein-expressing cells of strain JCM 5810 adhered to collagen-containing regions in the chicken colon, suggesting that CbsAmediated collagen binding represents a true tissue adherence property of L. crispatus.
SummaryThe protein regions in the S-layer protein CbsA of Lactobacillus crispatus JCM 5810, needed for binding to collagens and laminin, anchoring to bacterial cell wall, as well as self-assembly, were mapped by deletion analysis of His-tagged peptides isolated from Escherichia coli and by heterologous expression on Lactobacillus casei . Mature CbsA is 410 amino acids long, and stepwise genetic truncation at both termini revealed that the region 32-271 carries the information for self-assembly of CbsA into a periodic structure. The lactobacillar S-layer proteins exhibit sequence variation in their assembly domain, but the border regions 30-34 and 269-274 in CbsA are conserved in valine-rich short sequences. Short deletions or substitutions at these regions affected the morphology of His-CbsA polymers, which varied from sheet-like to cylindrical tubular polymers, and further truncation beyond the DNA encoding residues 32 and 271 leads to a non-periodic aggregation. The selfassembly of the truncated peptides, as seen by electron microscopy, was correlated with their behaviour in a cross-linking study. The shorter peptides not forming a regular polymer were observed by the cross-linking study and mass spectrometry to form dimers, trimers and tetramers, whereas the other peptides were cross-linked to large multimers only.
We developed a modified flagellar type III secretion apparatus to secrete heterologous polypeptides into the growth medium of Escherichia coli. The secretion was facilitated by fusing the 173-bp untranslated DNA fragment upstream of the gene fliC (encoding flagellin) as well as a transcriptional terminator from fliC, into the gene encoding the polypeptide of interest. The polypeptides secreted into the growth medium at concentrations ranging from 1 to 15 mg/l were from Campylobacter jejuni (262 residues in length), Streptococcus pneumoniae (434 residues), Staphylococcus aureus (115 residues), and N-terminal FliC hybrid proteins, for example, the eukaryotic green fluorescent protein (238 residues). The expressed proteins represented >50% of total secreted protein. Previously reported protein yields from extracellular secretion of foreign proteins in E. coli have been low, approximately 100 microg/l. The strengths of our method are the concentration and purity of the secreted proteins and its versatility with regard to the proteins' length and origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.