Endurance is one of the fastest growing equestrian disciplines worldwide. Races are long distance competitions (40-160 km), organised into loops, over variable terrain usually within one day. Horse and rider combinations in endurance races have to complete the course in good condition whilst also aiming to win. Horse welfare is paramount within the sport and horses are required to ‘pass’ a veterinary check prior to racing, after each loop of the course and at the end of the race. Despite the health, fitness and welfare of both athletes within the horse-rider dyad being essential to achieve success, few equivalent measures assessing the wellbeing of the endurance rider are implemented. This review considers evidence from ultra-endurance sports and rider performance in other equestrian disciplines, to consider physiological and psychological strategies the endurance rider could use to enhance their competition performance. Successful endurance riding requires an effective partnership to be established between horse and rider. Within this partnership, adequate rider health and fitness are key to optimal decision-making to manage the horse effectively during training and competition, but just as importantly riders should manage themselves as an athlete. Targeted management for superior rider performance can underpin more effective decision-making promoting ethical equitation practices and optimising competition performance. Therefore, the responsible and competitive endurance rider needs to consider how they prepare themselves adequately for participation in the sport. This should include engaging in appropriate physiological training for fitness and musculoskeletal strength and conditioning. Alongside planning nutritional strategies to support rider performance in training and within the pre-, peri- and post-competition periods to promote superior physical and cognitive performance, and prevent injury. By applying an evidence informed approach to self-management, the endurance athlete will support the horse and rider partnership to achieve to their optimal capacity, whilst maximising both parties physical and psychological wellbeing.
The functional movement screen (FMS) is an easily administered and non-invasive tool to identify areas of weakness and asymmetry during specific exercises. FMS is a common method of athlete screening in many sports and is used to ascertain injury risk, but has to be used within an equestrian population. The aim of this study was to establish FMS scores for female collegiate age (18-26 years) riders, to inform a normative data set of FMS scores in horse riders in the future. Thirteen female collegiate horse riders (mean ± standard deviation (sd); age 21.5±1.4 years, height 167.2±5.76 cm, mass 60.69±5.3 kg) and 13 female collegiate non-riders (mean ± sd; age 22.5±2.1 years, height 166.5±5.7 cm, mass 61.5±4.9 kg) were assessed based on their performance on a 7-point FMS (deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, trunk stability and rotary stability). The mean composite FMS scores (± sd) for the rider group was 14.15±1.9 and for the non-riders was 13.15±1.77. There was no statistically significant difference in median FMS composite scores between the rider and non-rider groups (Mann-Whitney U test, z=-1.249, P=0.223). However, 46% of riders and 69% of non-riders scored ≤14, indicating that a non-rider is 1.5 times (odds ratio) more likely to be at increased risk of injury compared to riders. Collegiate female riders scored higher than the non-rider population, but lower than seen in other sports suggesting some riders may be at risk of injury. Riders’ FMS scores demonstrated asymmetric movement patterns potentially limiting left lateral movement. Asymmetry has a potential impact on equestrian performance, limiting riders’ ability to apply the correct cues to the horse. The findings of such screening could inform the development of axillary training programmes to correct asymmetry pattern and target injury prevention.
This publication is a compilation of all Research Abstracts presented at the Ninth International Conference on Equine Exercise Physiology. Unlike previous ICEEP conferences there will not be a conference proceedings of full length manuscripts. These abstracts succinctly summarise a wide array of investigations relevant to the equine athlete, and will be useful to veterinarians and others involved in management of horses used for sport, work and competition. The abstracts encompass the topics of Applied Physiology; Biochemistry, Haematology, Endocrinology, and Thermoregulation; Cardiovascular and Respiratory; Muscle and Bone; Nutrition; Genomics, Proteomics, and Metabolomics; Biomechanics and Locomotion; as well as Physiotherapy, Rehabilitation, and Equitation science.The International Committee of ICEEP publishes these abstracts so that the most recent scientific information is available to a wide audience, including veterinarians, physiotherapists, trainers, owners and riders.The Introduction:The ability to accurately assess equine oxygen consumption (VO2) under field conditions has been limited by the need for unrestricted gas exchange.Methods: Two variations of a mask and an associated electronics control module (ECM) were designed to enable breath-by-breath measurement of airflows with two 8.0 cm diameter pneumotachometers located 7.5 cm in front of each narus and connected to differential pressure transducers mounted on the outside of the mask. The ECM was comprised of electronics for signal filtering to the flow transducers, an oxygen sensing cell, and an analog-to-digital converter all powered by a lithium-ion battery. The battery also powered a pump connected to gas sampling ports between the nares and pneumotachometers. Airflow and oxygen content of inspired and expired gases were recorded through the ECM and electronically transferred to a notebook. VO2 was determined from these recordings by an operator using a customized software analysis program. One mask encased the lower head (E). The other left the jaw free so horse could wear a bit and be ridden (R). Multiple treadmill exercise tests were undertaken by 6 horses to measure VO2max and blood gases. Each mask was worn twice and results compared to those from an open flow-through system (O) by 2-way RMANOVA (P<0.05). Utility of the system was evaluated using the intraclass correlation coefficient of 4 independent raters.Results: Blood gases and VO2max (152.0 ± 4.0 (mean ± SEM; O), 147.7 ± 4.3 (E), 150.7 ± 3.3 (R) ml/(kg.min) were not different between masks. VO2 measures were reproducible for each mask. Agreement between the 4 raters was excellent (intraclass correlation coefficient = 0.99). Conclusions:Masks capable of measuring VO2 during field exercise were developed, tested and found accurate by multiple users.Ethical Animal Research: Studies performed were approved by the Institution's Animal Care and Use Committee (protocol #3807). Sources of funding: Institutional sources. Competing interests: Washington State University has filed notice of i...
The occurrence of pericardial effusion during a hypothyroid state is frequent. This clinical evolution justifies the realization of an echocardiographic exam at diagnosis and during follow-up in the management of patient with hypothyroid disease. The pejorative clinical signs of pericardial effusion are relatively rare; the evolution into a pericardial tamponade is not frequently reported. This retrospective report covers the clinical evolution of 3 cases of pericardial tamponade commonly demonstrating a primary hypothyroidy. The echocardiogram allowed for immediate diagnosis of the tamponade; supported by the clinical aspect and the diagnosis of hypothyroidy confirmed biologically. The treatment approach was based on pericardiocentesis of the pericardial effusion associated with progressive hormonotherapy resulting in a favorable clinical outcome and the elimination of the pericardial effusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.