Gold mining produces hazardous tailings wastes with elevated sulfur content and high levels of heavy metals including oxyanion elements such as V and As. This research investigated activation of these tailings with calcium hydroxide and sodium hydroxide/sodium silicate as a way to stabilize the material and limit leaching of harmful components. The effects of thermal treatment on the reactivity of the tailings and the use of different activating solutions on the physical properties, microstructure and leaching of harmful components are reported. The effect of adding ground granulated blast furnace slag to the tailings is also assessed. The use of 5 wt % Ca(OH)2 activating solution produces optimum performance increasing the immobilization efficiency of sulfates, arsenic and the other harmful elements. Heat-treating mine tailings at 900˚C slightly improves the reactivity but did not improved the immobilization efficiency. Microstructural analysis by TEM and XRD confirmed that stabilization is based on calcium sulfate and/or ettringite formation during alkali-activation. All materials achieved reasonable compressive strength after 28 days of curing and the potential for using alkali activation as a method to treat tailings from mining is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.