High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of highrisk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.
In neuroblastoma, MYCN amplification and 11q-deletion are important, although incomplete, markers of high-risk disease. It is therefore relevant to characterize additional alterations that can function as prognostic and/or predictive markers. Using SNP-microarrays, a group of neuroblastoma patients showing amplification of one or multiple 12q loci was identified. Two loci containing CDK4 and MDM2 were commonly co-amplified, although amplification of either locus in the absence of the other was observed. Pharmacological inhibition of CDK4/6 with ribociclib or abemaciclib decreased proliferation in a broad set of neuroblastoma cell lines, including CDK4/MDM2-amplified, whereas MDM2 inhibition by Nutlin-3a was only effective in p53wild-type cells. Combined CDK4/MDM2 targeting had an additive effect in p53wild-type cell lines, while no or negative additive effect was observed in p53mutated cells. Most 12q-amplified primary tumors were of abdominal origin, including those of intrarenal origin initially suspected of being Wilms’ tumor. An atypical metastatic pattern was also observed with low degree of bone marrow involvement, favoring other sites such as the lungs. Here we present detailed biological data of an aggressive neuroblastoma subgroup hallmarked by 12q amplification and atypical clinical presentation for which our in vitro studies indicate that CDK4 and/or MDM2 inhibition also could be beneficial.
Neuroblastoma (NB) is a childhood malignancy of the sympathetic nervous system. NB is mainly driven by copy number alterations, such as MYCN amplification, large deletions of chromosome arm 11q and gain of chromosome arm 17q, which are all markers of high-risk disease. Genes targeted by recurrent, smaller, focal alterations include CDKN2A/B, TERT, PTPRD and ATRX. Our previous study on relapsed NB detected recurrent structural alterations centered at limbic system-associated membrane protein (LSAMP; HUGO Gene Nomenclature Committee: 6705; chromosomal location 3q13.31), which is a gene frequently reported to be deleted or downregulated in other types of cancer. Notably, in cancer, LSAMP has been shown to have tumor-suppressing functions. The present study performed an expanded investigation using whole genome sequencing of tumors from 35 patients, mainly with high-risk NB. Focal duplications or deletions targeting LSAMP were detected in six cases (17%), whereas single nucleotide polymorphism-microarray analysis of 16 NB cell lines detected segmental alterations at 3q13.31 in seven out of the 16 NB cell lines (44%). Furthermore, low expression of LSAMP in NB tumors was significantly associated with poor overall and event-free survival. In vitro, knockdown of LSAMP in NB cell lines increased cell proliferation, whereas overexpression decreased proliferation and viability. These findings supported a tumor suppressor role for LSAMP in NB. However, the higher incidence of LSAMP aberrations in cell lines and in relapsed NB tumors suggested that these alterations were a late event predominantly in advanced NB with a poor prognosis, indicating a role of LSAMP in tumor progression rather than in tumor initiation. In conclusion, the present study demonstrated recurrent genomic aberrations of chromosomal region 3q13.31 that targeted the LSAMP gene, which encodes a membrane protein involved in cell adhesion, central nervous system development and neurite outgrowth. The frequent aberrations affecting LSAMP, together with functional evidence, suggested an anti-proliferative role of LSAMP in NB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.