The sense of hearing is remarkable for its auditory dynamic range, which spans more than 10 12 in acoustic intensity. The mechanisms that enable the cochlea to transduce high sound levels without damage are of key interest, particularly with regard to the broad impact of industrial, military, and recreational auditory overstimulation on hearing disability. We show that ATP-gated ion channels assembled from P2X 2 receptor subunits in the cochlea are necessary for the development of temporary threshold shift (TTS), evident in auditory brainstem response recordings as sound levels rise. In mice null for the P2RX2 gene (encoding the P2X 2 receptor subunit), sustained 85-dB noise failed to elicit the TTS that wild-type (WT) mice developed. ATP released from the tissues of the cochlear partition with elevation of sound levels likely activates the broadly distributed P2X 2 receptors on epithelial cells lining the endolymphatic compartment. This purinergic signaling is supported by significantly greater noise-induced suppression of distortion product otoacoustic emissions derived from outer hair cell transduction and decreased suprathreshold auditory brainstem response input/output gain in WT mice compared with P2RX2-null mice. At higher sound levels (≥95 dB), additional processes dominated TTS, and P2RX2-null mice were more vulnerable than WT mice to permanent hearing loss due to hair cell synapse disruption. P2RX2-null mice lacked ATP-gated conductance across the cochlear partition, including loss of ATP-gated inward current in hair cells. These data indicate that a significant component of TTS represents P2X 2 receptordependent purinergic hearing adaptation that underpins the upper physiological range of hearing.noise-induced hearing loss | acoustic overstimulation | permanent threshold shift | auditory neurotransmission | sound transduction S ensory systems are characterized by adaptation processes that sustain transduction as stimulus intensity increases. The mammalian auditory system operates across an acoustic power range of 120 dB, measured on the logarithmic decibel scale. The mechanism for the extraordinary acuity of the cochlea (recalling the ageold adage of "hearing a pin drop") arises from the commitment of 75% of the sensory hair cells, the outer hair cells, to electromechanical (reverse) transduction, driving a "cochlear amplifier." The nonlinear outer hair cell reverse transduction provides an ∼40-dB gain at hearing threshold, reducing to zero as sound levels rise (1). A major challenge for auditory physiology is to understand how hearing is preserved in the face of acoustic overstimulation, as noise can damage the cochlea and can greatly exacerbate hearing loss with aging (2). Given the recent propensity for direct delivery of high-level recreational sound to the ear canals by personal music players and, more broadly, the impact on our hearing of noise from industrial and military environments, there is an imperative to better understand the intrinsic mechanisms that enable the cochlea to accommodate lo...
The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph(−/−) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph(+/+) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph(−/−) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex.
N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease—a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.Electronic supplementary materialThe online version of this article (10.1007/s00401-017-1784-9) contains supplementary material, which is available to authorized users.
Isoflurane is a volatile inhaled anaesthetic widely used in animal research, with particular utility for hearing research. Isoflurane has been shown to blunt hearing sensitivity compared with the awake state, but little is known about how isoflurane compares with other anaesthetics with regard to hair cell transduction and auditory neurotransmission. The current study was undertaken in C57Bl/6J and C129/SvEv strains of mice to determine whether isoflurane anaesthesia affects hearing function relative to ketamine-based anaesthesia. Cochlear function and central auditory transmission were assessed using auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE), comparing thresholds and input/output functions over time, for isoflurane vs. ketamine/xylazine/acepromazine anaesthesia. ABR thresholds at the most sensitive region of hearing (16 kHz) were initially higher under isoflurane anaesthesia. This reduced hearing sensitivity worsened over the 1 h study period, and also became evident with broadband click stimulus. Ketamine anaesthesia provided stable ABR thresholds. Although the growth functions were unchanged over time for both anaesthetics, the slopes under isoflurane anaesthesia were significantly less. Cubic (2f1–f2) DPOAE thresholds and growth functions were initially similar for both anaesthetics. After 60 min, DPOAE thresholds increased for both groups, but this effect was significantly greater with ketamine anaesthesia. The isoflurane-mediated increase in ABR thresholds over time is attributable to action on cochlear nerve activation, evident as a right-shift in the P1-N1 input/output function compared to K/X/A. The ketamine-based anaesthetic produced stable ABR thresholds and gain over time, despite a right-shift in the outer hair cell – mediated DPOAE input/output function.
The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten beta-strands in the extracellular domain and four alpha-helical transmembrane domains (M1-M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2-M3 loop have been implicated in receptor activation. The current "conformational change wave" hypothesis suggests that binding of a ligand initiates a rotation of the beta-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2-M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.