The objective of this research is to evaluate an integrated system coupling zero-valent iron (Fe 0 ) and aerobic biological oxidation for the treatment of azo dye wastewater. Zero-valent (elemental) iron can reduce the azo bond, cleaving dye molecules into products that are more amenable to aerobic biological treatment processes. Azo dye reduction products, including aniline and sulfanilic acid, were shown to be readily biodegradable at concentrations up to approximately 25 mg/L. Batch reduction and biodegradation data support the proposed integrated iron pretreatment and activated sludge process for the degradation of the azo dyes orange G and orange I. The integrated system was able to decolorize dye solutions and yield effluents with lower total organic carbon concentrations than control systems without iron pretreatment. The success of the bench-scale integrated system suggests that iron pretreatment may be a feasible approach to treat azo dye containing wastewaters. Water Environ. Res., 78, 19 (2006).
As part of a study to evaluate an integrated zero‐valent iron (Fe0)‐biological oxidation process for treating azo dye wastewaters, we conducted batch and column experiments with the azo dye orange G to assess the effects of solution conditions on the performance of iron pretreatment. The influence of iron type and surface area, solution pH, dissolved inorganic salts, and phosphate ion on the reduction (decolorization) of orange G solution were examined. In batch experiments, increased iron surface area, decreased pH, and chloride and sulfate salts enhanced dye decolorization, whereas high pH (9.9) and phosphate concentrations (>3 mg/L PO4‐P) inhibited dye reduction. Results from batch experiments were confirmed in column experiments. An increase in temperature from 22 to 35°C resulted in a near doubling of the reduction rate constant in a column study. The abiotic reduction results illustrate the feasibility and potential limitations of an integrated iron column, activated sludge treatment process for wastewaters containing azo dyes.
Samples of river water and treated drinking water were obtained from eight sites along the Potomac River between western Maryland and Washington DC. Samples were collected each month from October 2007 to September 2008 and analyzed for perchlorate by ion chromatography/mass spectrometry. Data on anions were also collected for seven of the twelve months. Data were analyzed to identify spatial and temporal patterns for the occurrence of perchlorate in the Potomac. Over the year of sampling, the largest monthly increase occurred from June to July, with levels then decreasing from July to September. Samples from the period between December and May had lower perchlorate concentrations, relative to the remainder of the study year. Spatially, higher levels of perchlorate were found at sites located in west-central Maryland, the eastern panhandle of West Virginia, and central northern Virginia, with levels decreasing slightly as the Potomac approaches Washington DC. Within the sampling boundaries, river (untreated) water perchlorate concentrations ranged from 0.03 μg L(-1) to 7.63 μg L(-1), averaged 0.67 ± 0.97 μg L(-1) over the year-long period and had a median value of 0.37 μg L(-1). There was no evidence that any of the existing drinking water treatment technologies at the sampling sites were effective in removing perchlorate. There were no correlations found between the presence of perchlorate and any of the anions or water quality parameters examined in the source water with the exception of a weak positive correlation with water temperature. Results from the summer (June-August) and fall (September-November) months sampled in this study were generally higher than from the winter and spring months (December-May). All but one of the locations had annual average perchlorate levels below 1 μg L(-1); however, 7 of the 8 sites sampled had river water perchlorate detections over 1 μg L(-1) and 5 of the 8 sites had treated water detections over this level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.