Nesting by hawksbill sea turtles Eretmochelys imbricata in Barbados, West Indies, has been monitored since 1992. Data from the index beach indicate that the number of nests may have increased as much as 8-fold over this period. The estimated abundance of nesting females on Barbados is 1250, suggesting that this eastern Caribbean island now hosts one of the largest rookeries in the wider Caribbean, with over 230 females nesting on the index beach alone. Given its extreme easterly position and the prevailing north-westerly current flow into the Caribbean Sea, Barbados is likely to be a significant contributor to foraging grounds throughout the region. Primary females, which are untagged and without tag scars, made up the majority of females encountered on nesting beaches in most years, suggesting that reductions in juvenile and sub-adult mortality, both nationally and regionally, are significant to the increase in number of nesting females. Females nest every 2.47 yr on average, although remigration intervals of individual females vary (range: 1 to 6 yr), suggesting environmental influences on nesting periodicity. The average clutch frequency estimated from the index beach was 4.1 nests per female, but that calculated from less intensively surveyed beaches was lower. Primary and Remigrant females differed in length, mass and clutch frequency; the results must be viewed with caution, however, as preliminary laparoscopic examinations revealed that some Primary females were not in fact nesting for their first season, and because differences in nest site fidelity between the 2 groups of females could potentially cause the differences in clutch frequencies estimated.
Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.