Skeletal muscle immobilization leads to atrophy, decreased metabolic health, and substantial losses in function. Animal models suggest that heat stress can provide protection against atrophy in skeletal muscle. This study investigated the effects of daily heat therapy on human skeletal muscle subjected to 10 days of immobilization. Muscle biopsies were collected, and MRIs were analyzed from the vastus lateralis of 23 healthy volunteers (11 women, 12 men) before and after either 10 days of immobilization with a daily sham treatment (Imm) or with a targeted, daily 2-h heat treatment using pulsed shortwave diathermy (Imm + H). Diathermy increased intramuscular temperature 4.2 ± 0.29°C ( P < 0.0001), with no change during sham treatment. As a result, heat shock protein (HSP)70 and HSP90 increased ( P < 0.05) following Imm + H (25 ± 6.6 and 20 ± 7.4%, respectively) but were unaltered with Imm only. Heat treatment prevented the immobilization-induced loss of coupled (−27 ± 5.2% vs. −8 ± 6.0%, P = 0.0041) and uncoupled (−25 ± 7.0% vs. −10 ± 3.9%, P = 0.0302) myofiber respiratory capacity. Likewise, heat treatment prevented the immobilization-induced loss of proteins associated with all five mitochondrial respiratory complexes ( P < 0.05). Furthermore, decreases in muscle cross-sectional area following Imm were greater than Imm + H at both the level of the whole muscle (−7.6 ± 0.96% vs. −4.5 ± 1.09%, P = 0.0374) and myofiber (−10.8 ± 1.52% vs. −5.8 ± 1.49%, P = 0.0322). Our findings demonstrate that daily heat treatments, applied during 10 days of immobilization, prevent the loss of mitochondrial function and attenuate atrophy in human skeletal muscle. NEW & NOTEWORTHY Limb immobilization results in substantial decreases in skeletal muscle size, function, and metabolic capacity. To date, there are few, if any, interventions to prevent the deleterious effects of limb immobilization on skeletal muscle health. Heat stress has been shown to elicit a stress response, resulting in increased heat shock protein expression and improved mitochondrial function. We show that during 10 days of lower-limb immobilization in humans, daily exposure to heat stress maintains mitochondrial respiratory capacity and attenuates atrophy in skeletal muscle. Our findings suggest that heat stress may serve as an effective therapeutic strategy to attenuate the decreases of muscle mass and metabolic function that accompany periods of disuse.
Physical activity impacts health and disease in multiple body tissues including the intervertebral discs. Fluid flow within the disc is an indicator of disc health that can be observed using diffusion weighted magnetic resonance imaging. We monitored activity levels of 26 participants, age 35-55 yrs, using Actigraph accelerometers for 4 days to evaluate vigorous-intensity activity, moderate to vigorous intensity activity, and sedentary time. Participants underwent structural and diffusion weighted magnetic resonance imaging to evaluate intervertebral disc health and fluid flow. They also underwent bone density scans, carotid artery ultrasounds, a treadmill test, and a physical exam for pain, range of motion, and instability. These measures were used to correlate MRI indicators of intervertebral disc health with participant activity levels. Participants with any vigorous-intensity physical activity compared with no vigorous-intensity activity had significantly greater L5/S1 apparent diffusion coefficient values (p = 0.002), corresponding to higher freedom of diffusive movement for cellular nutrients and metabolic waste. Sagittal T2 values in the L5/S1 were also higher (p = 0.004), corresponding to a higher water content in the discs. Higher apparent diffusion coefficients were also found in participants with more than 30 min compared with less than 30 min of daily moderate to vigorous physical activity (p = 0.03), and in participants with less than 67% awake time as sedentary time compared with more than 67% sedentary time (p = 0.03). Increased dynamic loading through physical activity and decreased static loading from sedentary time benefit intervertebral disc health. Physical activity, particularly vigorous activity, is beneficial in helping maintain intervertebral disc health. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1313-1323, 2018.
PurposeTo measure intervertebral disc (IVD) health parameters in middle-aged long-term runners compared to matched non-physically active controls. MethodsSeventeen males aged 44-62yr were included in the study: 9 runners with a running history of >10yr, averaging >50km/week, and eight matched non-physically active controls, the data from one participant had to be excluded. T2-relaxometry, diffusion weighted imaging, T1-and T2-weighted MR scanning, as well as T2 time mapping were performed. Morphological data relating to IVD were extrapolated. ResultsCompared to controls on average, runners had 20% greater IVD height (p = 0.002) and seven percentage points greater IVD-vertebral body height ratio (p = 0.001). No significant differences were observed between groups for mean(SD) IVD hydration status, as indicated by similar T2-times (runners: 94.4(11.1)ms, controls: 88.6(23.6)ms), or apparent diffusion coefficients (runners: 249.0(175.2)mm 2 /s, controls: 202.3(149.5)mm 2 /s). Average Pfirrmann score for the L5-S1 IVD was 2.2(0.7) for runners and 3.3(1.0) for controls (p = 0.026), average scores for all lumbar levels (L2-S1) were 1.9(0.2) and 2.5(0.7), respectively (p = 0.036). Anterior annulus T2-time and overall average lumbar level Pfirrmann grades were strongly correlated (r = 0.787, p = 0.021 and r = -0.704, p = 0.034, respectively) with greater distances run per week. Average lumbar level Pfirrmann grades were also strongly correlated (r = -0.823, p = 0.006) to total years of running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.