The lower jaw of the Devonian tetrapod Acanthostega is described for the first time. Redescriptions are provided for the lower jaws of the elpistostegid Panderichthys, the Devonian tetrapods Elginerpeton, Obruchevichthys, Metaxygnathus, Ventastega and Ichthyostega, and the Carboniferous tetrapods Crassigyrinus, Megalocephalus and Gephyrostegus. The character distri- butions thus revealed differ considerably from previous accounts, particularly in the wide distribution of certain primitive characters. Meckelian ossification in the middle part of the jaw is widespread among Devonian tetrapods, being demonstrably absent only in Acanthostega. Among Carboniferous tetrapods, a tooth-bearing parasymphysial plate is shown to be present in Crassigyrinus and Megalocephalus (having already been demonstrated by other authors in Whatcheeria and Greererpeton). A phylogenetic analysis of 26 early tetrapods including all the aforementioned genera, scored for 51 lower jaw characters, produces at least 2,500 equally parsimonious trees. However, the lack of resolution lies largely in a big top end polychotomy containing anthracosaurs, temnospondyls, seymouriamorphs, microsaurs and a nectridean-amniote clade. Below this polycho- tomy, which may correspond approximately to the tetrapod crown group, there is a well-resolved stem-group containing, in descending order, Megalocephalus, Greererpeton, Crassigyrinus, (jaws associated with) Tulerpeton, Whatcheeria, Acanthostega, Metaxygnathus, Ichthyostega, Ventastega and Metaxygnathus (unresolved), an Elginerpeton-Obruchevichthys clade, and Panderichthys. This conflicts with recently published phylogenies by Coates and Lebedev & Coates, which place Tulerpeton and all post-Devonian tetrapods in the amphibian or amniote branches of the tetrapod crown group.
The origin of tetrapods and the transition from swimming to walking was a pivotal step in the evolution and diversification of terrestrial vertebrates. During this time, modifications of the limbs—particularly the specialization of joints and the structures that guide their motions—fundamentally changed the ways in which early tetrapods could move. Nonetheless, little is known about the functional consequences of limb anatomy in early tetrapods and how that anatomy influenced locomotion capabilities at this very critical stage in vertebrate evolution. Here we present a three-dimensional reconstruction of the iconic Devonian tetrapod Ichthyostega and a quantitative and comparative analysis of limb mobility in this early tetrapod. We show that Ichthyostega could not have employed typical tetrapod locomotory behaviours, such as lateral sequence walking. In particular, it lacked the necessary rotary motions in its limbs to push the body off the ground and move the limbs in an alternating sequence. Given that long-axis rotation was present in the fins of tetrapodomorph fishes, it seems that either early tetrapods evolved through an initial stage of restricted shoulder and hip joint mobility or that Ichthyostega was unique in this respect. We conclude that early tetrapods with the skeletal morphology and limb mobility of Ichthyostega were unlikely to have made some of the recently described Middle Devonian trackways.
The end-Devonian to mid-Mississippian time interval has long been known for its depauperate palaeontological record, especially for tetrapods. This interval encapsulates the time of increasing terrestriality among tetrapods, but only two Tournaisian localities previously produced tetrapod fossils. Here we describe five new Tournaisian tetrapods (Perittodus apsconditus, Koilops herma, Ossirarus kierani, Diploradus austiumensis and Aytonerpeton microps) from two localities in their environmental context. A phylogenetic analysis retrieved three taxa as stem tetrapods, interspersed among Devonian and Carboniferous forms, and two as stem amphibians, suggesting a deep split among crown tetrapods. We also illustrate new tetrapod specimens from these and additional localities in the Scottish Borders region. The new taxa and specimens suggest that tetrapod diversification was well established by the Tournaisian. Sedimentary evidence indicates that the tetrapod fossils are usually associated with sandy siltstones overlying wetland palaeosols. Tetrapods were probably living on vegetated surfaces that were subsequently flooded. We show that atmospheric oxygen levels were stable across the Devonian/Carboniferous boundary, and did not inhibit the evolution of terrestriality. This wealth of tetrapods from Tournaisian localities highlights the potential for discoveries elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.