Strength decrements observed after extended (4-6 wk) periods of muscle unloading are associated with significant atrophy. Because early (up to 2 wk) strength gains from resistance exercise are related to improved neural recruitment, we hypothesized that the loss of strength resulting from 2 wk of muscle unloading [unilateral lower limb suspension (ULLS)] was due to impaired neural activation of the affected muscle. Blood samples, muscle biopsy specimens, muscle function data, and electromyography (EMG) recordings were analyzed before and after 14 days of muscle unloading. Pre- to postunloading data showed significant (P < or = 0.05) decrements in peak torque and total work performed by knee extensors and flexors. This was coupled with decreased EMG activity, but no change in neuromuscular efficiency (total torque/EMG). Resistance to muscle fatigue was enhanced after ULLS. The 14-day intervention failed to alter the size or fiber type distribution of muscle samples. However, resting plasma cortisol levels were significantly increased after muscle unloading, suggesting an endocrine environment favorable to muscle atrophy. Our data confirm that the diminution in muscle function displayed after 2 wk of unloading is mainly due to neural, rather than contractile, disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.