Predicting impacts of global environmental change is challenging due to the complex life cycles that characterize many terrestrial and aquatic taxa. Different life stages often interact with the physical environment in distinct ways, and a growing body of work suggests that stresses experienced during one life stage can "carry over" to influence subsequent stages. Assessments of population responses to environmental perturbation must therefore consider how effects might propagate across life-history transitions. We investigated consequences of ocean acidification (decreased pH and carbonate saturation) for early life stages of the Olympia oyster (Ostrea lurida), a foundation species in estuaries along the Pacific coast of North America. We reared oysters at three levels of seawater pH, including a control (8.0) and two additional levels (7.9 and 7.8). Oysters were cultured through their planktonic larval period to metamorphosis and into early juvenile life. Larvae reared under pH 7.8 exhibited a 15% decrease in larval shell growth rate, and a 7% decrease in shell area at settlement, compared to larvae reared under control conditions. Impacts were even more pronounced a week after settlement, with juveniles that had been reared as larvae under reduced pH exhibiting a 41% decrease in shell growth rate. Importantly, the latter effect arose regardless of the pH level the oysters experienced as juveniles, indicating a strong carry-over effect from the larval phase. Adverse impacts of early exposure to low pH persisted for at least 1.5 months after juveniles were transferred to a common environment. Overall, our results suggest that a stringent focus on a single phase of the life cycle (e.g., one perceived as the "weakest link") may neglect critical impacts that can be transferred across life stages in taxa with complex life histories.
Rapid environmental change is altering the selective pressures experienced by marine species. While adaptation to local environmental conditions depends on a balance between dispersal and natural selection across the seascape, the spatial scale of adaptation and the relative importance of mechanisms maintaining adaptation in the ocean are not well understood. Here, using population assignment tests, Approximate Bayesian Computation (ABC), and genome scans with double‐digest restriction‐site associated DNA sequencing data, we evaluated population structure and locus–environment associations in a commercially important species, summer flounder (Paralichthys dentatus), along the U.S. east coast. Based on 1,137 single nucleotide polymorphisms across 232 individuals spanning nearly 1,900 km, we found no indication of population structure across Cape Hatteras, North Carolina (FST = 0.0014) or of isolation by distance along the coast using individual relatedness. ABC estimated the probability of dispersal across the biogeographic break at Cape Hatteras to be high (95% credible interval: 7%–50% migration). However, we found 15 loci whose allele frequencies were associated with at least one of four environmental variables. Of those, 11 were correlated with bottom temperature. For summer flounder, our results suggest continued fisheries management as a single population and identify likely response mechanisms to climate change. Broadly speaking, our findings suggest that spatial balancing selection can manifest in adaptive divergence on regional scales in marine fish despite high dispersal, and that these conditions likely result in the widespread distribution of adaptive alleles and a high potential for future genetic adaptation in response to changing environmental conditions. In the context of a rapidly changing world, a landscape genomics perspective offers a useful approach for understanding the causes and consequences of genetic differentiation.
Effective population size (N e ) quantifies genetic drift in a population, making it one of the most important parameters in conservation and evolutionary biology (Charlesworth, 2009). As N e declines, the rate of genetic drift increases, decreasing the amount of standing genetic variation in a population and reducing the effectiveness of selection, all of which can limit a population's evolutionary potential
Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic variation across a species' range is of great interest in ecology and evolution, especially in an era of global change. While theory predicts how and when populations at range margins are likely to undergo local adaptation, empirical evidence testing these models remains sparse. Here, we address this knowledge gap by investigating the relationship between selection, gene flow and genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow from the core to the edge and genomic signatures of local adaptation at 56 single nucleotide polymorphisms in 25 candidate genes, most of which are significantly correlated with minimum annual sea surface temperature. Several of these candidate genes play a role in functions that are upregulated during cold stress, including protein turnover, metabolism and translation. Our results illustrate how spatially divergent selection spanning the range core to the periphery can occur despite the potential for strong genetic drift at the range edge and moderate gene flow from the core populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.