A well-established body of work indicates a crucial role for corticotropin releasing factor (CRF) in neurobiological responses associated with excessive dependence-like ethanol drinking in ethanol vapor exposed rodents. Recent evidence demonstrates a role for CRF in the modulation of binge-like ethanol consumption by non-dependent mice, a behavior which can precede ethanol dependence. The CRF circuitry that is engaged by binge-like ethanol exposure, however, is unknown. Using converging approaches, we provide evidence that, similar to ethanol vapor-induced increases in ethanol intake, CRF signaling in the central nucleus of the amygdala (CeA) is engaged during binge-like ethanol consumption by C57BL/6J mice. Specifically, we found that binge-like consumption of an ethanol solution (20% ethanol v/v) was attenuated by pretreatment with the CRF1R antagonists antalarmin, (4-ethyl-[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]amino-1-butanol (LWH-63), and NBI-27914 at doses (30 mg/kg, i.p.) that did not alter non-binge-like ethanol consumption. Binge-like ethanol consumption resulted in significant increases of CRF immunoreactivity in the CeA immediately following ethanol drinking and 18-24 h following ethanol removal and also blocked the ability of CRF to enhance GABAergic transmission in the CeA 18-24 h following ethanol removal. Pretreatment with bilateral injections of antalarmin (1 μg/ 0.5 μl per side) into the CeA, but not the adjacent basolateral amygdala (BLA), significantly attenuated binge-like ethanol consumption. These findings suggest that CRF signaling in the CeA is recruited during excessive ethanol intake, prior to the development of dependence. We hypothesize that plastic changes in CRF signaling develop with repeated binge-like drinking episodes, contributing to the transition to dependence.
Summary paragraphBinge alcohol drinking is a tremendous public health problem because it leads to the development of numerous pathologies including alcohol abuse, and anxiety1–4. It is thought to do so by hijacking brain systems that regulate stress and reward, including neuropeptide Y (NPY) and corticotropin–releasing factor (CRF). The central actions of NPY and CRF play opposing functional roles in the regulation of emotional and reward–seeking behaviors; therefore, dysfunctional interactions between these peptidergic systems could play a role in the development of these pathologies. Here, we used converging physiological, pharmacological, and chemogenetic approaches to identify a precise neural mechanism in the bed nucleus of the stria terminalis (BNST), a limbic brain region involved in pathological reward and anxiety behaviors, underlying the interactions between NPY and CRF in the regulation of binge alcohol drinking in both mice and monkeys. We found that NPY Y1 receptor (Y1R) activation in the BNST suppressed binge alcohol drinking by enhancing inhibitory synaptic transmission specifically in CRF neurons via a novel, Gi-mediated, PKA-dependent postsynaptic mechanism. Further, chronic alcohol drinking led to persistent alterations in Y1R function in the BNST of both mice and monkeys, highlighting the enduring, conserved nature of this effect across mammalian species. Together, these data provide both a cellular locus and signaling framework for the development of novel therapeutics for treatment of neuropsychiatric diseases, including alcohol use disorders.
Background Corticotropin-releasing factor (CRF) signaling at CRF1 receptors (CRF-1R) in the ventral tegmental area (VTA) can modulate ethanol consumption in rodents. However, the effects of binge-like ethanol drinking on this system have not been thoroughly characterized and little is known about the role of the CRF-2R or the CRF neurocircuitry involved. Methods The effects of binge-like ethanol consumption on the VTA CRF system were assessed following “drinking-in-the-dark” (DID) procedures. Intra-VTA infusions of selective CRF-1R and/or CRF-2R compounds were employed to assess the contributions of these receptors in modulating binge-like ethanol consumption (n=89). To determine the potential role of CRF projections from the bed nucleus of the stria terminalis (BNST) to the VTA, CRF neurons in this circuit were chemogenetically inhibited (n=32). Binge-induced changes in VTA CRF system protein and mRNA were also assessed (n=58). Results Intra-VTA antagonism of CRF-1R and activation of CRF-2R resulted in decreased ethanol intake which was eliminated by simultaneous blockade of both receptors. Chemogenetic inhibition of local CRF neurons in the VTA did not alter binge-like ethanol drinking, but inhibition of VTA-projecting CRF neurons from the BNST significantly reduced intake. Conclusions Here we provide novel evidence that A) blunted binge-like ethanol consumption stemming from CRF-1R blockade requires intact CRF-2R signaling and CRF-2R activation reduces binge-like drinking, B) inhibiting VTA-projecting BNST CRF neurons attenuates binge-like drinking, and C) binge-like ethanol drinking alters protein and mRNA associated with the VTA-CRF system. These data suggest that ethanol-induced activation of BNST-to-VTA CRF projections is critical in driving binge-like ethanol intake.
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.