Attention is disrupted commonly in psychiatric disorders, yet mechanistic insight remains limited. Deficits in this function are associated with dorsal anterior cingulate cortex (dACC) excitotoxic lesions and pharmacological disinhibition; however, a causal relationship has not been established at the cellular level. Moreover, this association has not yet been examined in a genetically tractable species such as mice. Here, we reveal that dACC neurons causally contribute to attention processing by combining a chemogenetic approach that reversibly suppresses neural activity with a translational, touchscreen-based attention task in mice. We virally expressed inhibitory hM4Di DREADD (designer receptor exclusively activated by a designer drug) in dACC neurons, and examined the effects of this inhibitory action with the attention-based five-choice serial reaction time task. DREADD inactivation of the dACC neurons during the task significantly increased omission and correct response latencies, indicating that the neuronal activities of dACC contribute to attention and processing speed. Selective inactivation of excitatory neurons in the dACC not only increased omission, but also decreased accuracy. The effect of inactivating dACC neurons was selective to attention as response control, motivation, and locomotion remain normal. This finding suggests that dACC excitatory neurons play a principal role in modulating attention to task-relevant stimuli. This study establishes a foundation to chemogenetically dissect specific cell-type and circuit mechanisms underlying attentional behaviors in a genetically tractable species.
Major histocompatibility complex class I (MHCI) proteins have been implicated in neuronal function through the modulation of neuritogenesis, synaptogenesis, synaptic plasticity, and memory consolidation during development. However, the involvement of MHCI in the aged brain is unclear. Here we demonstrate that MHCI deficiency results in significant dendritic atrophy along with an increase in thin dendritic spines and a reduction in stubby spines in the hippocampus of aged (12 month old) mice. Ultrastructural analyses revealed a decrease in spine head diameter and post synaptic density (PSD) area, as well as an increase in overall synapse density, and non-perforated, small spines. Interestingly, we found that the changes in synapse density and morphology appear relatively late (after the age of 6 months). Finally, we found a significant age dependent increase in the levels of the glutamate receptor, GluN2B in aged MHCI knockout mice, with no change in GluA2/3, VGluT1, PSD95 or synaptophysin. These results indicate that MHCI may be also be involved in maintaining brain integrity at post-developmental stages notably in the modulation of neuronal and spine morphology and synaptic function during non-pathological aging which could have significant implications for cognitive function.
Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [ 18 F]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [ 18 F]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [ 18 F]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI.
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder most commonly associated with repetitive traumatic brain injury (TBI) and characterized by the presence of neurofibrillary tangles of tau protein, known as a tauopathy. Currently, the diagnosis of CTE can only be definitively established postmortem. However, a new positron emission tomography (PET) ligand, [18F]T807/AV1451, may provide the antemortem detection of tau aggregates, and thus various tauopathies, including CTE. Our goal was to examine [18F]T807/AV1451 retention in athletes with neuropsychiatric symptoms associated with a history of multiple concussions. Here we report a 39-year-old retired National Football League player who suffered 22 concussions and manifested progressive neuropsychiatric symptoms. Emotional lability and irritability were the chief complaints. Serial neuropsychological exams revealed a decline in executive functioning, processing speed and fine motor skills. Naming was below average but other cognitive functions were preserved. Structural analysis of longitudinally acquired magenetic resonance imaging scans revealed cortical thinning in the left frontal and lateral temporal areas, as well as volume loss in the basal ganglia. PET with [18F]florbetapir was negative for amyloidosis. The [18F]T807/AV1451 PET showed multifocal areas of retention at the cortical gray matter–white matter junction, a distribution considered pathognomonic for CTE. [18F]T807/AV1451 standard uptake value (SUV) analysis showed increased uptake (SUVr⩾1.1) in bilateral cingulate, occipital, and orbitofrontal cortices, and several temporal areas. Although definitive identification of the neuropathological underpinnings basis for [18F]T807/AV1451 retention requires postmortem correlation, our data suggest that [18F]T807/AV1451 tauopathy imaging may be a promising tool to detect and diagnose CTE-related tauopathy in living subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.