The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is a significant conservation threat to salamander biodiversity in Europe, although its potential to affect North American species is poorly understood. We tested the susceptibility of two genera (Eurycea and Pseudotriton) and three populations of lungless salamanders (Plethodontidae) to Bsal. All species became infected with Bsal and two (Pseudotriton ruber and Eurycea wilderae) developed chytridiomycosis. We also documented that susceptibility of E. wilderae differed among populations. Regardless of susceptibility, all species reduced feeding when exposed to Bsal at the highest zoospore dose, and P. ruber and one population of E. wilderae used cover objects less. Our results indicate that Bsal invasion in eastern North America could have significant negative impacts on endemic lungless salamander populations. Future conservation efforts should include surveillance for Bsal in the wild and in captivity, and championing legislation that requires and subsidizes pathogen‐free trade of amphibians.
Human-mediated disease outbreaks due to poor biosecurity practices when processing animals in wild populations have been suspected. We tested whether not changing nitrile gloves between processing wood frog (Lithobates sylvaticus) tadpoles and co-housing individuals increased pathogen transmission and subsequent diseased-induced mortality caused by the emerging pathogen, ranavirus. We found that not changing gloves between processing infected and uninfected tadpoles resulted in transmission of ranavirus and increased the risk of mortality of uninfected tadpoles by 30X. Co-housing tadpoles for only 15 minutes with 10% of individuals infected resulted in ranavirus transmission and 50% mortality of uninfected tadpoles. More extreme mortality was observed when the co-housing infection prevalence was >10%. Our results illustrate that human-induced disease outbreaks due to poor biosecurity practices are possible in wild animal populations.
Populations of the eastern hellbender Cryptobranchus alleganiensis alleganiensis have been declining for decades, and emerging pathogens and pesticides are hypothesized to be contributing factors. However, few empirical studies have attempted to test the potential effects of these factors on hellbenders. We simultaneously exposed subadult hellbenders to environmentally relevant concentrations of either Batrachochytrium dendrobatidis (Bd) or a frog virus 3‐like ranavirus (RV), a combination of the pathogens, or each pathogen following exposure to a glyphosate herbicide (Roundup). Additionally, we measured the ability of the skin mucosome to inactivate Bd and RV in growth assays. We found that mucosome significantly inactivated RV by an average of 40% but had no negative effects on Bd growth. All treatments that included RV exposure experienced reduced survival compared to controls, and the combination of RV and herbicide resulted in 100% mortality. Histopathology verified RV as the cause of mortality in all RV‐exposed treatments. No animals were infected with Bd or died in the Bd‐only treatment. Our results suggest that RV exposure may be a significant threat to the survival of subadult hellbenders and that Roundup exposure may potentially exacerbate this threat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.