Recent environmental changes have demonstrated that the Earth has entered the Anthropocene. In this new age, complex interactions between human and natural systems exacerbate “wicked problems” that challenge researchers to engage both deep disciplinary expertise and broad integrative knowledge to address these societally relevant problems. Researchers and practitioners are making an increased effort to bridge the divide between human and natural systems research by facilitating multi-, inter-, and transdisciplinary collaborations. Despite 21st century changes to the research environment, the structure of a typical graduate education remains largely unchanged over the past several decades. Wicked problems necessitate communication and collaboration expertise; innovative transdisciplinary training and research opportunities can equip graduate students with these necessary skills. Oregon State University has offered such an opportunity through an NSF-funded Research Traineeship Program (NRT) for students focusing on Risk and Uncertainty Quantification and Communication in Marine Science. Herein, we reflect on the experience of graduate students who successfully completed the NRT and assert that support for transdisciplinary training and research at the graduate stage is urgently needed. We present five lessons learned from our year-long transdisciplinary project focused on the development of an approach for integrating diverse data sets within a social-ecological systems framework to reach a broader understanding of the interconnections between a marine reserve system, people, and the environment. Finally, we present current challenges and paths forward to enhance the success of early career transdisciplinary research.
Ichthyoplankton assemblages in the south central Tyrrhenian Sea are not known in spite of this being an intensely fished area. There are two large canyons in this region: Dohrn, in the Gulf of Naples, and Cuma, at the south end of the Gulf of Gaeta. In this study, we provide the first description of summer ichthyoplankton assemblages in the vicinity of the two canyons and present the physical features and Lagrangian particle tracking analyses at the time of the sampling. We identified fish larvae of 19 families and fish eggs of 8 families. The most abundant species was Engraulis encrasicolus, which was found at densities comparable to other known spawning grounds of the western Mediterranean. Mesopelagic species, such as Gonostomatidae and Myctophidae, were also abundant, especially at the Cuma Canyon. The notochord and standard length of the E. encrasicolus larvae ranged from 2.06 to 10.47 mm and was significantly smaller at the Cuma stations than at the Dohrn stations, suggesting the presence of sub-populations with different spawning phenologies. The passive particle tracking analyses and the examination of currents confirmed distinct circulation features between the two sampled regions and in relation to depth and proximity to the canyon heads. These results uncover previously unknown rich assemblages of fish eggs and larvae and have conservation and management implications given the proximity of these canyons to a marine protected area and to an intensely fished continental shelf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.