Medication management in schizophrenia is a lengthy process, as the lack of clinical response can only be confirmed after at least 4 weeks of antipsychotic treatment at a therapeutic dose. Thus, there is a clear need for the discovery of biomarkers that have the potential to accelerate the management of treatment. Using resting-state functional MRI, we examined the functional connectivity of the ventral tegmental area (VTA), the origin of the mesocorticolimbic dopamine projections, in 21 healthy controls and 21 unmedicated patients with schizophrenia at baseline (pre-treatment) and after 1 week of treatment with the antipsychotic drug risperidone (1-week posttreatment). Group-level functional connectivity maps were obtained and group differences in connectivity were assessed on the groups' participant-level functional connectivity maps. We also examined the relationship between pre-treatment/1-week post-treatment functional connectivity and treatment response. Compared with controls, patients exhibited significantly reduced pre-treatment VTA/midbrain connectivity to multiple cortical and subcortical regions, including the dorsal anterior cingulate cortex (dACC) and thalamus. After 1 week of treatment, VTA/midbrain connectivity to bilateral regions of the thalamus was re-established. Pre-treatment VTA/midbrain connectivity strength to dACC was positively correlated with good response to a 6-week course of risperidone, whereas pre-treatment VTA/midbrain connectivity strength to the default mode network was negatively correlated. Our findings suggest that VTA/midbrain resting-state connectivity may be a useful biomarker for the prediction of treatment response.
To better characterize hippocampal pathophysiology in schizophrenia, we conducted a longitudinal study evaluating hippocampal functional connectivity during resting state, using seeds prescribed in its anterior and posterior regions. We enrolled 34 unmedicated patients with schizophrenia or schizoaffective disorder (SZ) and 34 matched healthy controls. SZ were scanned while off medication, then were treated with risperidone for 6 weeks and re-scanned (n = 22). Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. We found significant dysconnectivity with anterior and posterior hippocampal seeds in unmedicated SZ. Baseline connectivity between the hippocampus and anterior cingulate cortex, caudate nucleus, auditory cortex and calcarine sulcus in SZ predicted subsequent response to antipsychotic medications. These same regions demonstrated changes over the 6-week treatment trial that were correlated with symptomatic improvement. Our findings implicate several neural networks relevant to clinical improvement with antipsychotic medications.
ObjectiveTo describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks.Material and methods34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps.ResultsIn unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone.ConclusionsOur results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity.
A number of neuroimaging studies have provided evidence in support of the hypothesis that faulty interactions between spatially disparate brain regions underlie the pathophysiology of schizophrenia, but it remains unclear to what degree antipsychotic medications affect these. We hypothesized that the balance between functional integration and segregation of brain networks is impaired in unmedicated patients with schizophrenia, but that it can be partially restored by antipsychotic medications. We included 32 unmedicated patients with schizophrenia (SZ) and 32 matched healthy controls (HC) in this study. We obtained resting-state scans while unmedicated, and again after 6 weeks of treatment with risperidone to assess functional integration and functional segregation of brain networks using graph theoretical measures. Compared with HC, unmedicated SZ showed reduced global efficiency and increased clustering coefficients. This pattern of aberrant functional network integration and segregation was modulated with antipsychotic medications, but only in those who responded to treatment. Our work lends support to the concept of schizophrenia as a dysconnectivity syndrome, and suggests that faulty brain network topology in schizophrenia is modulated by antipsychotic medication as a function of treatment response.
These results support the notion that memory disruption in schizophrenia might originate from hippocampal dysfunction and that medication restores some aspects of fronto-temporal dysconnectivity. Patterns of fronto-temporal connectivity could provide valuable biomarkers to identify new treatments for the symptoms of schizophrenia, including memory deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.