Mammalian spermatozoa complete their morphogenesis and acquire their fertilizing potential in the epididymis. Prominent among the hallmarks of epididymal sperm maturation is the proximal-distal migration of the cytoplasmic droplet (CD), the last remnant of the spermatogenic cell cytoplasm, down the sperm flagellum. Failure to shed the CD has been associated with male infertility. Because of the presence of the organelle degradation enzyme 15-lipoxygenase (15LOX) in sperm CD, we hypothesize that subfertile male Alox15 mice lacking the 15Lox gene display sperm CD anomalies. Caput and cauda epididymal sperm samples from seven adult Alox15 and seven wild-type (wt) males of equal age were examined by differential interference contrast microscopy (DIC) and transmission electron microscopy (TEM). Compared with wt males, Alox15 males had significantly more spermatozoa with a retained CD in both caput (P = 0.004) and cauda (P = 0.005) epididymidis. TEM and DIC analyses revealed intact mitochondria present in the CDs of epididymal Alox15 spermatozoa. The CDs of wt spermatozoa, however, had a smooth appearance and contained only hollow membrane vesicles, with no intact mitochondria embedded in their CD matrix. Epithelial lesions, phagocytosis-like figures, and missing or aberrant apical blebs were observed in the caput epididymidis of Alox15 males. Thus, the process of epididymal sperm maturation and CD migration is altered in Alox15 males. Aberrant sperm maturation might contribute to the reduced fertility and smaller litter size of Alox15 mice, a rare example of subfertile mutants displaying normal spermatogenesis but altered epididymal sperm maturation.
Mitochondrial transcription factor A (TFAM) is responsible for stability, maintenance, and transcriptional control of mitochondrial DNA (mtDNA). We have studied the expression and distribution of TFAM in the gametes and preimplantation embryos of the domestic pig (Sus scrofa). We hypothesized that TFAM is not present in the boar sperm mitochondria to reduce the possibility of paternal mtDNA propagation in the progeny. In contrast, we anticipated that Tfam gene is expressed in a developmental stage-dependent manner in porcine oocytes and embryos. The appropriate TFAM band of 25 kDa was detected by Western blotting in ejaculated boar spermatozoa, as well as in porcine oocytes and zygotes. Boar sperm extracts also displayed several bands >25 kDa suggestive of post-translational modification by ubiquitination, confirmed by affinity purification of ubiquitinated proteins. TFAM immunoreactivity was relegated to the sperm tail principal piece and sperm head in fully differentiated spermatozoa. The content of Tfam mRNA increased considerably from the germinal vesicle to blastocyst stage and also between in vitro fertilized and cultured blastocysts compared to in vivo-derived blastocysts. TFAM protein accumulated in the oocytes during maturation and was reduced by proteolysis after fertilization. This pattern was not mirrored in parthenogenetically activated oocytes and zygotes reconstructed by SCNT, suggesting deviant processing of TFAM protein and transcript after oocyte/embryo manipulation. Thus, TFAM may exert a critical role in porcine gametogenesis and preimplantation embryo development. Altogether, our data on the role of TFAM in mitochondrial function and inheritance have broad implications for cell physiology and evolutionary biology.
Mitochondria are cells' power stations producing energy for cell sustenance and multiplication. Mitochondria carry their own unique genes that are separate from genes encoded by nuclear chromosomes. TFAM is a protein encoded by a nuclear gene that binds directly to select mitochondrial genes to control the renewal and multiplication of mitochondria. Mouse embryos with mutated TFAM gene die. We examined the distribution of TFAM protein in the sperm cells, eggs, and embryos of domestic pig, a livestock species of great agricultural importance. As the porcine ovum matures in preparation for fertilization by increasing the number of its mitochondria, TFAM protein is produced and accumulated in its cytoplasm and mitochondria. When fertilization takes place, the amount of TFAM protein in the new embryo is drastically reduced, possibly to prevent overproduction of mitochondria during early development. TFAM is surprisingly found in the area of boar sperm tail free of mitochondria. Furthermore, the residues of TFAM protein found in the sperm tail appear to be marked for degradation with a protein-recycling molecule ubiquitin. Removal of TFAM may facilitate the destruction of paternal, sperm-contributed mitochondria at fertilization, a normal event in mammals. TFAM may have critical roles for maturation of porcine sex cells and embryo development. By understanding the function of TFAM protein, we hope to devise new strategies to reduce early pregnancy loss causing reduced litter sizes and substantial financial loses to pork industry. Technologies such as pig cloning and embryo transfer could be improved by managing TFAM function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.