BackgroundMyopia is one of most common eye diseases in the world and affects 1 in 4 Americans. It is a complex disease caused by both environmental and genetics effects; the genetics effects are still not well understood. In this study, we performed genetic linkage analyses on Ashkenazi Jewish families with a strong familial history of myopia to elucidate any potential causal genes.MethodsSixty-four extended Ashkenazi Jewish families were previously collected from New Jersey. Genotypes from the Illumina ExomePlus array were merged with prior microsatellite linkage data from these families. Additional custom markers were added for candidate regions reported in literature for myopia or refractive error. Myopia was defined as mean spherical equivalent (MSE) of -1D or worse and parametric two-point linkage analyses (using TwoPointLods) and multi-point linkage analyses (using SimWalk2) were performed as well as collapsed haplotype pattern (CHP) analysis in SEQLinkage and association analyses performed with FBAT and rv-TDT.ResultsStrongest evidence of linkage was on 1p36(two-point LOD = 4.47) a region previously linked to refractive error (MYP14) but not myopia. Another genome-wide significant locus was found on 8q24.22 with a maximum two-point LOD score of 3.75. CHP analysis also detected the signal on 1p36, localized to the LINC00339 gene with a maximum HLOD of 3.47, as well as genome-wide significant signals on 7q36.1 and 11p15, which overlaps with the MYP7 locus.ConclusionsWe identified 2 novel linkage peaks for myopia on chromosomes 7 and 8 in these Ashkenazi Jewish families and replicated 2 more loci on chromosomes 1 and 11, one previously reported in refractive error but not myopia in these families and the other locus previously reported in the literature. Strong candidate genes have been identified within these linkage peaks in our families. Targeted sequencing in these regions will be necessary to definitively identify causal variants under these linkage peaks.Electronic supplementary materialThe online version of this article (10.1186/s12881-019-0752-8) contains supplementary material, which is available to authorized users.
Inflammatory bowel disease (IBD) is an immune-mediated chronic intestinal disorder with major phenotypes; ulcerative colitis (UC), and Crohn’s disease (CD). Multiple studies have identified over 240 IBD susceptibility loci. However, most studies have centered on European (EUR) and East Asian (EAS) populations. The prevalence of IBD in non-EUR, including African Americans (AAs), has risen in recent years. Here we present the first attempt to identify loci in AAs using a trans-ancestry Bayesian approach (MANTRA) accounting for heterogeneity between diverse ancestries while allowing for the similarity between closely related populations. We meta-analyzed GWAS and Immunochip data from a 2015 EUR meta-analysis of 38 155 IBD cases and 48 485 controls and EAS Immunochip study of 2824 IBD cases and 3719 controls, and our recent AA IBD GWAS of 2345 cases and 5002 controls. Across the major IBD phenotypes, we found significant evidence for 92% of the 2015 loci but also 3 IBD loci only established in latter studies. We detected 20 novel loci, all containing immunity-related genes or genes with other evidence for IBD or immune-mediated disease relevance: PLEKHG5;TNFSFR25 (encoding death receptor 3, receptor for TNFSF15 gene product TL1A), XKR6, ELMO1, BC021024;PI4KB;PSMD4, and APLP1 for IBD; AUTS2, XKR6, OSER1, TET2;AK094561, BCAP29, and APLP1 for CD; and GABBR1;MOG, DQ570892, SPDEF;ILRUN, SMARCE1;CCR7;KRT222;KRT24;KRT25, ANKS1A;TCP11, IL7, LRRC18;WDFY4, XKR6 and TNFSF4 for UC. Our study highlights the value of combining low-powered genomic studies from understudied populations of diverse ancestral backgrounds together with a high-powered study to enable novel locus discovery, including potentially important therapeutic IBD gene targets.
The purpose of this study was to perform genetic linkage analysis and association analysis on exome genotyping from highly aggregated African American families with nonpathogenic myopia. African Americans are a particularly understudied population with respect to myopia. METHODS.One hundred six African American families from the Philadelphia area with a family history of myopia were genotyped using an Illumina ExomePlus array and merged with previous microsatellite data. Myopia was initially measured in mean spherical equivalent (MSE) and converted to a binary phenotype where individuals were identified as affected, unaffected, or unknown. Parametric linkage analysis was performed on both individual variants (single-nucleotide polymorphisms [SNPs] and microsatellites) as well as gene-based markers. Family-based association analysis and transmission disequilibrium test (TDT) analysis modified for rare variants was also performed. RESULTS.Genetic linkage analysis identified 2 genomewide significant variants at 7p15.2 and 7p14.2 (in the intergenic region between MIR148A and NFE2L3 and in the noncoding RNA LOC401324) and 2 genomewide significant genes (CRHR2 and AVL9) both at 7p14.3. No genomewide results were found in the association analyses. CONCLUSIONS.This study identified a significant linkage peak in African American families for myopia at 7p15.2 to 7p14.2, the first potential risk locus for myopia in African Americans. Interesting candidate genes are located in the region, including PDE1C, which is highly expressed in the eyes, and known to be involved in retinal development. Further identification of the causal variants at this linkage peak will help elucidate the genetics of myopia in this understudied population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.