A variety of psychoacoustic procedures are available to assess temporal resolution; however, the clinical use of these procedures is minimal at best. Results of the present study show that the GIN test holds promise as a clinically useful tool in the assessment of temporal resolution in the clinical arena.
In this study we investigate the possible role of phenotypic plasticity and genetic assimilation in the process of adaptation and evolutionary change in the cichlid Pseudocrenilabrus multicolor victoriae. In the field we compared a population of a stable hypoxic habitat with one of a stable well‐oxygenated habitat. In the laboratory, we compared individuals from the same mother raised under hypoxic or well‐oxygenated conditions to examine phenotypic plasticity. Morphological parameters of three categories were measured: (a) the gill apparatus, (b) the surrounding structural elements, and (c) the outer shape of the fish. Swamp‐dwelling fish had a 29% greater total gill surface area than fish from the well‐oxygenated habitat due to their larger gill filament length and greater lamellar area. In the plasticity experiment, total gill surface area was 18% greater in the hypoxia group due to a larger number of longer filaments. Surrounding elements and outer shape also differed between the field populations and between fish grown under hypoxic and well‐oxygenated conditions, but there was disparity between the field results and the plasticity experiment. The disparity between field and experimental fish may be due to: (a) differences in selection pressures between populations, (b) different constraints for genetic and plasticity changes, or (c) selection against plastic responses to hypoxia. Our results suggest that both (a) and (c) are involved.
Auditory training (AT) for the treatment of auditory processing disorders (APD) has generated considerable interest recently. There is emerging evidence that well conceived AT programs can improve higher auditory function. The plasticity of the brain underlies the success of AT. This article reviews brain plasticity and the role of plasticity in AT outcomes, and highlights key studies that provide insight into the clinical use of AT for APD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.