Regulation of cellular adhesion and cytoskeletal dynamics is essential for neurulation, though it remains unclear how these two processes are coordinated. Members of the Ena/VASP family of proteins are localized to sites of cellular adhesion and actin dynamics and lack of two family members, Mena and VASP, in mice results in failure of neural tube closure. The precise mechanism by which Ena/VASP proteins regulate this process, however, is not understood. In this report, we show that Xenopus Ena (Xena) is localized to apical adhesive junctions of neuroepithelial cells during neurulation and that Xena knockdown disrupts cell behaviors integral to neural tube closure. Changes in the shape of the neural plate as well as apical constriction within the neural plate are perturbed in Xena knockdown embryos. Additionally, we demonstrate that Xena is essential for cell-cell adhesion. These results demonstrate that Xena plays an integral role in coordinating the regulation of cytoskeletal dynamics and cellular adhesion during neurulation in Xenopus.
Background: The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive.
Regulation of actin dynamics, organization, and interaction with cell surface adhesion proteins is critical for tissue morphogenesis during development. The Ena/VASP family of actin-binding proteins function in several cellular processes that involve dynamic regulation of the actin cytoskeleton, including axon guidance, platelet aggregation, cell migration, and cell adhesion. The vertebrate Ena/VASP family is composed of three genes: Ena (Enabled), VASP (Vasodilator Stimulated Phosphoprotein), and Evl (Ena/ VASP-Like). To better understand the role of Ena/VASP proteins during vertebrate development, we have cloned and characterized the developmental expression of Ena in Xenopus laevis. Analysis of the temporal expression of Xenopus Ena (Xena) demonstrates that multiple isoforms of Xena are detected throughout embryogenesis and that the presence of different isoforms is developmentally regulated. In situ hybridization analyses reveal that Xena is broadly expressed throughout development. During gastrulation and neurulation, Xena is detected in the neuroepithelium, notochord, and somites. In tadpoles, Xena expression is restricted to dorsal regions of the brain, whereas it is expressed at lower levels throughout the spinal cord. Xena expression is also detected in the notochord, myotome, heart, pronephros, and cranial placodes, including the olfactory and otic placodes. Analysis of the subcellular localization of Xena using a GFP fusion protein revealed that Xena localizes to adherens junctions and focal adhesions in Xenopus animal caps and NIH3T3 fibroblasts, respectively. These results define spatiotemporal windows in which Xena may function during early Xenopus development to modulate actin-dependent processes such as cell adhesion and migration. Developmental Dynamics 233:631-637, 2005.
Since the three main pathways (the Wnt, VegT and BMP pathways) involved in organizer and axis formation in the Xenopus embryo are now characterized, the challenge is to understand their interactions. Here three comparisons were made. Firstly, we made a systematic comparison of the expression of zygotic genes in sibling wild-type, VegT-depleted (VegT–), β-catenin-depleted (β-catenin–) and double depleted (VegT–/β-catenin–) embryos and placed early zygotic genes into specific groups. In the first group some organizer genes, including chordin, noggin and cerberus, required the activity of both the Wnt pathway and the VegT pathway to be expressed. A second group including Xnr1, 2, 4 and Xlim1 were initiated by the VegT pathway but their dorsoventral pattern and amount of their expression was regulated by the Wnt pathway. Secondly, we compared the roles of the Wnt and VegT pathways in producing dorsal signals. Explant co-culture experiments showed that the Wnt pathway did not cause the release of a dorsal signal from the vegetal mass independent from the VegT pathway. Finally we compared the extent to which inhibiting Smad 1 phosphorylation in one area of VegT–, or β-catenin– embryos would rescue organizer and axis formation. We found that BMP inhibition with cm-BMP7 mRNA had no rescuing effects on VegT– embryos, while cm-BMP7 and noggin mRNA caused a complete rescue of the trunk, but not of the anterior pattern in β-catenin– embryos.
During cleavage stages, maternal VegT mRNA and protein are localized to the Xenopus embryo's vegetal region from which the endoderm will arise and where several zygotic gene transcripts will be localized. Previous loss-of-function experiments on this T-box transcription factor suggested a role for VegT in Xenopus endoderm formation. Here, we test whether VegT is required to initiate endoderm formation using a loss of function approach. We find that the endodermal genes, Bix1, Bix3, Bix4, Milk (Bix2), Mix.1, Mix.2, Mixer, Xsox17 alpha, Gata4, Gata5, Gata6 and endodermin, as well as the anterior endodermal genes Xhex and cerberus, and the organizer specific gene, Xlim1, are downstream of maternal VegT. We also find that the TGF beta s, Xnr1, Xnr2, Xnr4 and derriere rescue expression of these genes, supporting the idea that cell interactions are critical for proper endoderm formation. Additionally, inhibitory forms of Xnr2 and Derriere blocked the ability of VegT mRNA injection to rescue VegT-depleted embryos. Furthermore, a subset of endodermal genes was rescued in VegT-depleted vegetal masses by induction from an uninjected vegetal mass. Finally, we begin to establish a gene hierarchy downstream of VegT by testing the ability of Mixer and Gata5 to rescue the expression of other endodermal genes. These results identify VegT as the maternal regulator of endoderm initiation and illustrate the complexity of zygotic pathways activated by VegT in the embryo's vegetal region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.