Human embryonic stem cells (hESCs) derived from human blastocysts have an apparently unlimited proliferative capacity and can differentiate into ectoderm, mesoderm, and endoderm. As such, hESC lines have enormous potential for use in cell replacement therapies. It must first be demonstrated, however, that hESCs maintain a stable karyotype and phenotype and that gene expression is appropriately regulated. To date, different hESC lines exhibit similar patterns of expression of markers associated with pluripotent cells. However, the evaluation of epigenetic status of hESC lines has only recently been initiated. One example of epigenetic gene regulation is dosage compensation of the X chromosome in mammalian females. This is achieved through an epigenetic event referred to as X-chromosome inactivation (XCI), an event initiated upon cellular differentiation. We provide the first evidence that undifferentiated hESC lines exhibit different patterns of XCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.