Ionizing irradiation results in significant alterations in hippocampal neurogenesis that are associated with cognitive impairments. Such effects are influenced, in part, by alterations in the microenvironment within which the neurogenic cells exist. One important factor that may affect neurogenesis is oxidative stress, and this study was done to determine if and how the extracellular isoform of superoxide dismutase (SOD3, EC-SOD) mediated radiation-induced alterations in neurogenic cells. Wild-type (WT) and EC-SOD knockout (KO) mice were irradiated with 5 Gy and acute (8-48 h) cellular changes and long-term changes in neurogenesis were quantified. Acute radiation responses were not different between genotypes, suggesting that the absence of EC-SOD did not influence mechanisms responsible for acute cell death after irradiation. On the other hand, the extent of neurogenesis was decreased by 39% in nonirradiated KO mice relative to WT controls. In contrast, while neurogenesis was decreased by nearly 85% in WT mice after irradiation, virtually no reduction in neurogenesis was observed in KO mice. These findings show that after irradiation, an environment lacking EC-SOD is much more permissive in the context of hippocampal neurogenesis. This finding may have a major impact in developing strategies to reduce cognitive impairment after cranial irradiation.
Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. In the central nervous system (CNS), loss of critical cellular components may lead to performance decrements that could ultimately compromise mission goals and long-term quality of life. Hippocampal-dependent cognitive impairments occur after exposure to ionizing radiation, and while the pathogenesis of this effect is not yet clear, it may involve the production of newly born neurons (neurogenesis) in the hippocampal dentate gyrus. We irradiated mice with 0.5-4 Gy of 56 Fe ions and 2 months later quantified neurogenesis and numbers of activated microglia as a measure of neuroinflammation in the dentate gyrus. Results showed that there were few changes after 0.5 Gy, but that there was a dose-related decrease in hippocampal neurogenesis and a dose-related increase in numbers of newly born activated microglia from 0.5-4.0 Gy. While those findings were similar to what was reported after X irradiation, there were also some differences, particularly in the response of newly born glia. Overall, this study showed that hippocampal neurogenesis was sensitive to relatively low doses of 56 Fe particles, and that those effects were associated with neuroinflammation. Whether these changes will result in functional impairments or if/how they can be managed are topics for further investigation.
Hippocampal precursors retain the capacity to proliferate and differentiate throughout life, and their progeny, immature neurons, can undergo neurogenesis, a process believed to be important in maintaining the cognitive health of an organism. A variety of stresses including irradiation have been shown to deplete neural precursor cells, an effect that inhibits neurogenesis and is associated with the onset of cognitive impairments. Our past work has shown that neural precursor cells exposed to X-rays or protons exhibit a prolonged increase in oxidative stress, a factor we hypothesize to be critical in regulating the function of these cells after irradiation and other stresses. Here we report that irradiation of hippocampal precursor cells with high-linear energy transfer (LET) 1 GeV/nucleon 56Fe ions leads to significantly higher levels of oxidative stress when compared to lower LET radiations (X-rays, protons). Irradiation with 1 Gy of 56Fe ions elicits twofold to fivefold higher levels of reactive oxygen species (ROS) compared to unirradiated controls, and at lower doses (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.