Objective: Since 2012, all community care recipients in New Zealand have undergone a standardised needs assessment using the Home Care International Residential Assessment Instrument (interRAI‐HC). This study describes the national interRAI‐HC population, assesses its data quality and evaluates its ability to be matched. Methods: The interRAI‐HC instrument elicits information on 236 questions over 20 domains; conducted by 1,800+ trained health professionals. Assessments between 1 July 2012 and 30 June 2014 are reported here. Stratified by age, demographic characteristics were compared to 2013 Census estimates and selected health profiles described. Deterministic matching to the Ministry of Health's mortality database was undertaken. Results: Overall, 51,232 interRAI‐HC assessments were conducted, with 47,714 (93.1%) research consent from 47,236 unique individuals; including 2,675 Māori and 1,609 Pacific people. Apart from height and weight, data validity and reliability were high. A 99.8% match to mortality data was achieved. Conclusions: The interRAI‐HC research database is large and ethnically diverse, with high consent rates. Its generally good psychometric properties and ability to be matched enhances its research utility. Implications: This national database provides a remarkable opportunity for researchers to better understand older persons’ health and health care, so as to better sustain older people in their own homes.
To design an efficient survey or monitoring program for a natural resource it is important to consider the spatial distribution of the resource. Generally, sample designs that are spatially balanced are more efficient than designs which are not. A spatially balanced design selects a sample that is evenly distributed over the extent of the resource. In this article we present a new spatially balanced design that can be used to select a sample from discrete and continuous populations in multi-dimensional space. The design, which we call balanced acceptance sampling, utilizes the Halton sequence to assure spatial diversity of selected locations. Targeted inclusion probabilities are achieved by acceptance sampling. The BAS design is conceptually simpler than competing spatially balanced designs, executes faster, and achieves better spatial balance as measured by a number of quantities. The algorithm has been programed in an R package freely available for download.
Models based on species distributions are widely used and serve important purposes in ecology, biogeography and conservation. Their continuous predictions of environmental suitability are commonly converted into a binary classification of predicted (or potential) presences and absences, whose accuracy is then evaluated through a number of measures that have been the subject of recent reviews. We propose four additional measures that analyse observation-prediction mismatch from a different angle -namely, from the perspective of the predicted rather than the observed area -and add to the existing toolset of model evaluation methods. We explain how these measures can complete the view provided by the existing measures, allowing further insights into distribution model predictions. We also describe how they can be particularly useful when using models to forecast the spread of diseases or of invasive species and to predict modifications in species' distributions under climate and land-use change.
Decision trees are a popular technique in statistical data classification. They recursively partition the feature space into disjoint sub-regions until each sub-region becomes homogeneous with respect to a particular class. The basic Classification and Regression Tree (CART) algorithm partitions the feature space using axis parallel splits. When the true decision boundaries are not aligned with the feature axes, this approach can produce a complicated boundary structure. Oblique decision trees use oblique decision boundaries to potentially simplify the boundary structure. The major limitation of this approach is that the tree induction algorithm is computationally expensive. In this article we present a new decision tree algorithm, called HHCART. The method utilizes a series of Householder matrices to reflect the training data at each node during the tree construction. Each reflection is based on the directions of the eigenvectors from each classes' covariance matrix. Considering axis parallel splits in the reflected training data provides an efficient way of finding oblique splits in the unreflected training data. Experimental results show that the accuracy and size of the HHCART trees are comparable with some benchmark methods in the literature. The appealing feature of HHCART is that it can handle both qualitative and quantitative features in the same oblique split.
Exponentially weighted moving average (EWMA) control charts are mostly used to monitor the manufacturing processes. In this paper, we propose some improved EWMA control charts for detecting the random shifts in the process mean and process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS), named EWMA‐ORSS and EWMA‐OIRSS charts, respectively. Monte Carlo simulations are used to estimate the average run length, median run length and standard deviation of run length of the proposed EWMA control charts. It is observed that the EWMA‐ORSS mean control chart is able to detect the random shifts in the process mean substantially quicker than the Shewhart‐cumulative sum and the Shewhart‐EWMA control charts based on the RSS scheme. Both EWMA‐ORSS and EWMA‐OIRSS location charts perform better than the classical EWMA, hybrid EWMA, Shewhart‐EWMA and fast initial response‐EWMA charts. The EWMA‐ORSS dispersion control chart performs better than the simple random sampling based CS‐EWMA and other EWMA control charts in efficient detection of the random shifts that occur in the process variability. An application to real data is also given to explain the implementation of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.