Anguimorpha is a clade of limbed and limbless squamates with ca. 196 extant species and a known fossil record spanning the past 130 million years. Morphology-based and molecule-based phylogenetic analyses disagree on several key points. The analyses differ consistently in the placements of monstersaurs (e.g. Gila Monsters), shinisaurs (Crocodile Lizards), the anguid Anniella (American Legless Lizards), carusioids (Knobby Lizards), and the major clades within Varanus (Monitor Lizards). Given different data sources with such different phylogenetic hypotheses, Anguimorpha is an excellent candidate for a combined phylogenetic analysis. We constructed a data matrix consisting of 175 fossil and extant anguimorphs, and 2281 parsimony-informative characters (315 morphological characters and 1969 molecular characters). We analysed these data using the computer program TNT using the ''new technology search'' with the ratchet. Our result is novel and shows similarities with both morphological and molecular trees, but is identical to neither. We find that a global combined evidence analysis (GCA) does not recover a holophyletic Varanoidea, but omission of fossil taxa reveals cryptic molecular support for that group. We describe these results and others from global morphological analysis, extant-only morphological analysis, molecular data-only analyses, combined evidence analysis of extant taxa, and GCA.
Four closely related species, Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis, form a clade within the family Vibrionaceae; the taxonomic status and phylogenetic position of this clade have remained ambiguous for many years. To resolve this ambiguity, we tested these species against other species of the Vibrionaceae for phylogenetic and phenotypic differences. Sequence identities for the 16S rRNA gene were ≥97.4 % among members of the V. fischeri group, but were ≤95.5 % for members of this group in comparison with type species of other genera of the Vibrionaceae (i.e. Photobacterium and Vibrio, with which they overlap in G+C content, and Enterovibrio, Grimontia and Salinivibrio, with which they do not overlap in G+C content). Combined analysis of the recA, rpoA, pyrH, gyrB and 16S rRNA gene sequences revealed that the species of the V. fischeri group form a tightly clustered clade, distinct from these other genera. Furthermore, phenotypic traits differentiated the V. fischeri group from other genera of the Vibrionaceae, and a panel of 13 biochemical tests discriminated members of the V. fischeri group from type strains of Photobacterium and Vibrio. These results indicate that the four species of the V. fischeri group represent a lineage within the Vibrionaceae that is distinct from other genera. We therefore propose their reclassification in a new genus, Aliivibrio gen. nov. Aliivibrio is composed of four species: Aliivibrio fischeri comb. nov. (the type species) (type strain ATCC 7744T =CAIM 329T =CCUG 13450T =CIP 103206T =DSM 507T =LMG 4414T =NCIMB 1281T), Aliivibrio logei comb. nov. (type strain ATCC 29985T =CCUG 20283T =CIP 104991T =NCIMB 2252T), Aliivibrio salmonicida comb. nov. (type strain ATCC 43839T =CIP 103166T =LMG 14010T =NCIMB 2262T) and Aliivibrio wodanis comb. nov. (type strain ATCC BAA-104T =NCIMB 13582T =LMG 24053T).
Several different groups of birds have been proposed as being the oldest or earliest diverging extant lineage within the avian phylogenetic tree, particularly ratites (Struthioniformes), waterfowl (Anseriformes), and shorebirds (Charadriiformes). Difficulty in resolving this issue stems from several factors, including the relatively rapid radiation of primary (ordinal) bird lineages and the lack of characters from an extant outgroup for birds that is closely related to them by measure of time. To help resolve this question, we have sequenced entire mitochondrial genomes for five birds (a rhea, a duck, a falcon, and two perching birds), one crocodilian, and one turtle. Maximum parsimony and maximum likelihood analyses of these new sequences together with published sequences (18 taxa total) yield the same optimal tree topology, in which a perching bird (Passeriformes) is sister to all the other bird taxa. A basal position for waterfowl among the bird study taxa is rejected by maximum likelihood analyses. However, neither the conventional view, in which ratites (including rhea) are basal to other birds, nor tree topologies with falcon or chicken basal among birds could be rejected in the same manner. In likelihood analyses of a subset of seven birds, alligator, and turtle (9 taxa total), we find that increasing the number of parameters in the model shifts the optimal topology from one with a perching bird basal among birds to the conventional view with ratites diverging basally; moreover, likelihood scores for the two trees are not significantly different. Thus, although our largest set of taxa and characters supports a tree with perching birds diverging basally among birds, the position of this earliest divergence among birds appears unstable. Our analyses indicate a sister relationship between a waterfowl/chicken clade and ratites, relative to perching birds and falcon. We find support for a sister relationship between turtles and a bird/crocodilian clade, and for rejecting both the Haemothermia hypothesis (birds and mammals as sister taxa) and the placement of turtles as basal within the phylogenetic tree for amniote animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.