The recently described exchange protein directly activated by cAMP (Epac) has been implicated in distinct protein kinase A-independent cellular signalling pathways. We investigated the role of Epac activation in adrenergically mediated ventricular arrhythmogenesis. In contrast to observations in control conditions (n = 20), monophasic action potentials recorded in 2 of 10 intrinsically beating and 5 of 20 extrinsically paced Langendorff-perfused wild-type murine hearts perfused with the Epac activator 8-pCPT-2′-O-Me-cAMP (8-CPT, 1 μM) showed spontaneous triggered activity. Three of 20 such extrinsically paced hearts showed spontaneous ventricular tachycardia (VT). Programmed electrical stimulation provoked VT in 10 of 20 similarly treated hearts (P < 0.001; n = 20). However, there were no statistically significant accompanying changes (P > 0.05) in left ventricular epicardial (40.7 ± 1.2 versus 44.0 ± 1.7 ms; n = 10) or endocardial action potential durations (APD90; 51.8 ± 2.3 versus 51.9 ± 2.2 ms; n = 10), transmural (ΔAPD90) (11.1 ± 2.6 versus 7.9 ± 2.8 ms; n = 10) or apico-basal repolarisation gradients, ventricular effective refractory periods (29.1 ± 1.7 versus 31.2 ± 2.4 ms in control and 8-CPT-treated hearts, respectively; n = 10) and APD90 restitution characteristics. Nevertheless, fluorescence imaging of cytosolic Ca2+ levels demonstrated abnormal Ca2+ homeostasis in paced and resting isolated ventricular myocytes. Epac activation using isoproterenol in the presence of H-89 was also arrhythmogenic and similarly altered cellular Ca2+ homeostasis. Epac-dependent effects were reduced by Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibition with 1 μM KN-93. These findings associate VT in an intact cardiac preparation with altered cellular Ca2+ homeostasis and Epac activation for the first time, in the absence of altered repolarisation gradients previously implicated in reentrant arrhythmias through a mechanism dependent on CaMKII activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.