Uniquely among adult tissues, the human endometrium undergoes cyclical shedding, scar-free repair and regeneration during a woman's reproductive life. Therefore, it presents an outstanding model for study of such processes. This Review examines what is known of endometrial repair and regeneration following menstruation and parturition, including comparisons with wound repair and the influence of menstrual fluid components. We also discuss the contribution of endometrial stem/progenitor cells to endometrial regeneration, including the importance of the stem cell niche and stem cell-derived extracellular vesicles. Finally, we comment on the value of endometrial epithelial organoids to extend our understanding of endometrial development and regeneration, as well as therapeutic applications.
Accumulating evidence indicates that elevated S100P promotes the pathogenesis of cancers, including colon cancer. S100P exerts its effects by binding to and activating the Receptor for Advance Glycation End-products (RAGE). The effects of up-regulated S100P/RAGE signaling on cell functions are well documented. Despite these observations, little is known about the downstream targets of S100P/RAGE signaling. In the present study, we demonstrated for the first time that activation of RAGE by S100P regulates oncogenic microRNA-155 (miR-155) expression through Activator Protein-1 (AP-1) stimulation in colon cancer cells. Ectopic S100P up-regulated miR-155 levels in human colon cancer cells. Conversely, knockdown of S100P resulted in a decrease in miR-155 levels. Exogenous S100P induced miR-155 expression, but blockage of the RAGE with anti-RAGE antibody suppressed the induction of miR-155 by exogenous S100P. Attenuation of AP-1 activation through pharmacological inhibition of MEK activation or genetic inhibition of c-Jun activation using dominant negative c-Jun (TAM67) suppressed miR-155 induction by exogenous S100P. Also, S100P treatment stimulated the enrichment of c-Fos, an AP-1 family member, at the miR-155 host gene promoter site. Finally, a functional study demonstrated that miR-155 knockdown decreases colon cancer cell growth, motility, and invasion. Altogether, these data demonstrate that the expression of miR-155 is regulated by S100P and is dependent on RAGE activation and stimulation of AP-1.
In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo‐endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the “final frontier” in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre‐implantation human embryos, and primary human endometrial epithelial cells, to functionally identify “fertile” versus “infertile” endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity (“epithelial receptome”) and trophectoderm adhesion (“adhesome”). As validation, key “epithelial receptome” proteins (MAGT‐1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid‐secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non‐receptive (proliferative) phase tissues. Factors involved in embryo‐epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.