Establishing structure–activity relationships is crucial to understand and optimize the activity of peptide-based inhibitors of protein–protein interactions. Single alanine substitutions provide limited information on the residues that tolerate simultaneous modifications with retention of biological activity. To guide optimization of peptide binders, we use combinatorial peptide libraries of over 4,000 variants—in which each position is varied with either the wild-type residue or alanine—with a label-free affinity selection platform to study protein–ligand interactions. Applying this platform to a peptide binder to the oncogenic protein MDM2, several multi-alanine-substituted analogs with picomolar binding affinity were discovered. We reveal a non-additive substitution pattern in the selected sequences. The alanine substitution tolerances for peptide ligands of the 12ca5 antibody and 14-3-3 regulatory protein are also characterized, demonstrating the general applicability of this new platform. We envision that binary combinatorial alanine scanning will be a powerful tool for investigating structure–activity relationships.
The cover image, by J. C. Gaines et al., is based on the Research Article Comparing side chain packing in soluble proteins, protein‐protein interfaces, and transmembrane proteins, DOI: .
Backbone‐dependent rotamer libraries are commonly used to assign the side chain dihedral angles of amino acids when modeling protein structures. Most rotamer libraries are created by curating protein crystal structure data and using various methods to extrapolate the existing data to cover all possible backbone conformations. However, these rotamer libraries may not be suitable for modeling the structures of cyclic peptides and other constrained peptides because these molecules frequently sample backbone conformations rarely seen in the crystal structures of linear proteins. To provide backbone‐dependent side chain information beyond the α‐helix, β‐sheet, and PPII regions, we used explicit‐solvent metadynamics simulations of model dipeptides to create a new rotamer library that has high coverage in the (ϕ, ψ) space. Furthermore, this approach can be applied to build high‐coverage rotamer libraries for noncanonical amino acids. The resulting Metadynamics of Dipeptides for Rotamer Distribution (MEDFORD) rotamer library predicts the side chain conformations of high‐resolution protein crystal structures with similar accuracy (~80%) to a state‐of‐the‐art rotamer library. Our ability to test the accuracy of MEDFORD at predicting the side chain dihedral angles of amino acids in noncanonical backbone conformation is restricted by the limited structural data available for cyclic peptides. For the cyclic peptide data that are currently available, MEDFORD and the state‐of‐the‐art rotamer library perform comparably. However, the two rotamer libraries indeed make different rotamer predictions in noncanonical (ϕ, ψ) regions. For noncanonical amino acids, the MEDFORD rotamer library predicts the χ1 values with approximately 75% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.