The neurodegeneration that occurs in sporadic Alzheimer's disease (AD) is consistently associated with a number of characteristic histopathological, molecular, and biochemical abnormalities, including cell loss, abundant neurofibrillary tangles and dystrophic neurites, amyloid-β deposits, increased activation of pro-death genes and signaling pathways, impaired energy metabolism/mitochondrial function, and evidence of chronic oxidative stress. The general inability to convincingly link these phenomena has resulted in the emergence and propagation of various heavily debated theories that focus on the role of one particular element in the pathogenesis of all other abnormalities. However, the accumulating evidence that reduced glucose utilization and deficient energy metabolism occur early in the course of disease, suggests a role for impaired insulin signaling in the pathogenesis of AD. The present work demonstrates extensive abnormalities in insulin and insulin-like growth factorm typer I and II (IGF-I and IGF-II) signaling mechanisms in brains with AD, and shows that while each of the corresponding growth factors is normally made in central nervous system (CNS) neurons, the expression levels are markedly reduced in AD. These abnormalities were associated with reduced levels of insulin receptor substrate (IRS) mRNA, tau mRNA, IRS-associated phosphotidylinositol 3-kinase, and phospho-Akt (activated), and increased glycogen synthase kinase-3β activity and amyloid precursor protein mRNA expression. The strikingly reduced CNS expression of genes encoding insulin, IGF-I, and IGF-II, as well as the insulin and IGF-I receptors, suggests that AD may represent a neuro-endocrine disorder that resembles, yet is distinct from diabetes mellitus. Therefore, we propose the term, "Type 3 Diabetes" to reflect this newly identified pathogenic mechanism of neurodegeneration.
Ethanol impairs insulin-stimulated survival and mitochondrial function in immature proliferating neuronal cells due to marked inhibition of downstream signaling through P13 kinase. The present study demonstrates that, in contrast to immature neuronal cells, the major adverse effect of chronic ethanol exposure (50 mM) in post-mitotic rat cerebellar granule neurons is to inhibit insulin-stimulated mitochondrial function (MTT activity, MitoTracker Red fluorescence, and cytochrome oxidase immunoreactivity). Ethanol-impaired mitochondrial function was associated with increased expression of the p53 and CD95 pro-apoptosis genes, reduced Calcein AM retention (a measure of membrane integrity), increased SYTOX Green and propidium iodide uptake (indices of membrane permeability), and increased oxidant production (dihydrorosamine fluorescence and H2O2 generation). The findings of reduced membrane integrity and mitochondrial function in short-term (24 h) ethanol-exposed neurons indicate that these adverse effects of ethanol can develop rapidly and do not require chronic neurotoxic injury. A role for caspase activation as a mediator of impaired mitochondrial function was demonstrated by the partial rescue observed in cells that were pre-treated with broad-spectrum caspase inhibitors. Finally, we obtained evidence that the inhibitory effects of ethanol on mitochondrial function and membrane integrity were greater in insulin-stimulated compared with nerve growth factor-stimulated cultures. These observations suggest that activation of insulin-independent signaling pathways, or the use of insulin sensitizer agents that enhance insulin signaling may help preserve viability and function in neurons injured by gestational exposure to ethanol.
Neuronal loss and neuritic/cytoskeletal lesions (synaptic disconnection and proliferation of dystrophic neurites) represent major dementia-associated abnormalities in Alzheimer's disease (AD). This study examined the role of oxidative stress as a factor contributing to both the cell death and neuritic degeneration cascades in AD. Primary neuron cultures were treated with H2O2 (9-90 microM) or desferrioxamine (2-25 microM) for 24 h and then analyzed for viability, mitochondrial mass, mitochondrial function, and pro-apoptosis and sprouting gene expression. H2O2 treatment causes free-radical injury and desferrioxamine causes hypoxia-type injury without free radical generation. The H2O2-treated cells exhibited sustained viability but neurite retraction, impaired mitochondrial function, increased levels of the pro-apoptosis gene product CD95/Fas, reduced expression of N2J1-immunoreactive neuronal thread protein and synaptophysin, and reduced distribution of mitochondria in neuritic processes. Desferrioxamine treatment resulted in dose-dependent neuronal loss associated with impaired mitochondrial function, proliferation of neurites, and reduced expression of GAP-43, which has a role in path-finding during neurite outgrowth. The results suggest that oxidative stress can cause neurodegeneration associated with enhanced susceptibility to apoptosis due to activation of pro-apoptosis genes, neurite retraction (synaptic disconnection), and impaired transport of mitochondria to cell processes where they are likely required for synaptic function. In contrast, hypoxia-type injury causes neuronal loss with proliferation of neurites (sprouting), impaired mitochondrial function, and reduced expression of molecules required to form and maintain synaptic connections. Since similar abnormalities occur in AD, both oxidative stress and hypoxic injury can contribute to AD neurodegeneration.
Cell loss and neuritic/cytoskeletal lesions represent two of the major categories of dementia-associated structural abnormalities in Alzheimer's disease (AD). Cell loss is ultimately mediated by apoptosis and mitochondrial DNA damage due to enhanced sensitivity to oxidative stress, but the mechanism responsible for the neuritic/cytoskeletal lesions including the abnormal proliferation of cortical neurites is not known. This study examines the potential role of oxygen free radical injury as a factor contributing to both cell death and neuritic sprouting cascades in AD. PNET2 human neuronal cells were treated with H 2 O 2 (8 µM to 88 µM) for 24 hours and then analyzed for viability, DNA damage, and proapoptosis, survival, and sprouting gene expression and signaling. H 2 O 2 -treatment resulted in dose-dependent increases in cell death due to genomic and mitochondrial DNA damage associated with increased levels of 8-OHdG and the p53 and CD95 pro-apoptosis genes,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.