Hydrogen sensors built with individual palladium nanowires (Pd NWs) have been achieved by integrating Pd NWs across microelectromechanical system (MEMS) electrodes, followed by assembling and bonding them to a chip carrier platform. The sensing measurements reveal that the sensors with individual Pd NWs show reverse sensing behaviors between the temperature zones of (370-263 K) and (263-120 K).
We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Doped graphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 1013 cm−2 with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance (ca. 84%) in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.
The image shows an artistic version of a Pd nanowire surrounded by hydrogen molecules. The nanowire is electrically connected to the Pt electrodes of a sensor device by L. F. Fonseca and co-workers to study the effects of reduced temperature on its electrical response during hydrogen gas exposure. The TEM image shows the ordered crystal structure of the material. As described on page 188, when temperature is reduced, a crossover from a bulk- to a percolationcontrolled response is observed. This effect was confirmed in nanowires arrays on interdigitated electrodes and single nanowires integrated to MEMS devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.