Insulin-like growth factor binding proteins (IGFBP) may act locally as autocrine or paracrine regulators of insulin-like growth factor activity in specific tissues such as muscle. Although secretion of IGFBP by cultured myogenic cell lines has been examined, little is known about secretion of IGFBP by primary myogenic cell cultures. This may be because primary myogenic cultures contain non-muscle cells (fibroblasts) that complicate interpretation of IGFBP determinations. We have circumvented this problem by subculturing nonfusing cells from extensively fused porcine myogenic cultures and comparing the IGFBP production of these nonfusing, porcine muscle-derived cells with that of primary porcine myogenic cell cultures. Immunoprecipitation with specific antibodies and 125I-IGF-I ligand blot analysis showed that myogenic cultures secreted IGFBP-3 (doublet band, 43 kDa and 39 kDa), IGFBP-2 (34 kDa), IGFBP-4 (30 and 24 kDa), and IGFBP-5 (30 and 28 kDa). Muscle-derived fibroblasts secreted no detectable IGFBP-3 but approximately 10 times more IGFBP-2 than did myogenic cell cultures. Treatment of myogenic cultures for 24 h with transforming growth factor (TGF) beta-1 caused a concentration-dependent increase in IGFBP-3 secretion with a maximum 1.5-fold increase occurring at .5 ng of TGF beta-1/mL. In contrast, TGF beta-1 treatment did not stimulate detectable IGFBP-3 secretion by muscle-derived fibroblast cultures. Northern analysis of total RNA using a porcine IGFBP-3 probe revealed that TGF beta-1 treatment resulted in a fourfold increase in the steady-state level of IGFBP-3 mRNA in myogenic cultures. Insulin-like growth factor binding protein-3 mRNA was not detectable in fibroblast cultures either before or after TGF beta-1 treatment. This is the first report of IGFBP-3 secretion by cultured myogenic cells.
Exercise therapy is considered an important component in the care of the chronically breathless patient. Improvements in exercise capacity and wellbeing are the commonly reported benefits. However, further research is needed if we are to understand more about the mechanism of improvement and the contribution that exercise therapy alone makes to the patient's overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.