These results provide evidence of oxidative damage to podocytes induces primary diabetic nephropathic features including severe and sustained albuminuria, specific glomerular filtration barrier damage and alterations in glomerular endothelial and mesangial cell number. Importantly, these diabetic complications are significantly mitigated by podocyte targeted metallothionein overexpression.
Diabetic cardiomyopathy is a clinically distinct disease characterized by impaired cardiac function as a result of reduced contractility and hypertension-induced athero-or arteriosclerosis. This may be due either to generalized vascular disease, tissue-based injury such as focal cardiomyocyte dysmorphia, or microvascular damage manifested by myocardial capillary basement membrane (CBM) thickening. Hyperglycemia-driven increases in reactive oxygen species (ROS) have been proposed to contribute to such damage. To address this hypothesis, we utilized light (LM) and transmission electron microscopy (TEM) to demonstrate cardiomyocyte morphology and myocardial CBM thickness in the left ventricles of four mouse genotypes: FVB (background Friend virus B controls), OVE (transgenic diabetics), Mt [transgenics with targeted overexpression of the antioxidant protein metallothionein (MT) in cardiomyocytes], and OVEMt (bi-transgenic cross of OVE and Mt) animals. Mice were prepared for morphometric analysis by vascular perfusion. Focal myocardial disorganization was identified in OVE mice but not in the remaining genotypes. Not unexpectedly, myocardial CBM thickness was increased significantly in OVE relative to FVB (P < 0.05) and Mt (P < 0.05) animals (128% and 139.5%, respectively). Remarkably, however, OVEMt myocardial CBMs showed no increase in width; rather they were 3% thinner than FVB controls. Although the molecular mechanisms regulating CBM width remain elusive, it seems possible that despite a significant hyperglycemic environment, MT antioxidant activity may mitigate local oxidative stress and reduce downstream excess microvascular extracellular matrix (ECM) formation. In addition, the reduction of intraand perivascular ROS may protect against incipient endothelial damage and the CBM thickening that results from such injury. Anat Rec,
We previously demonstrated that OVE transgenic diabetic mice are susceptible to chronic complications of diabetic nephropathy (DN) including substantial oxidative damage to the renal glomerular filtration barrier (GFB). Importantly, the damage was mitigated significantly by overexpression of the powerful antioxidant, metallothionein (MT) in podocytes. To test our hypothesis that GFB damage in OVE mice is the result of endothelial oxidative insult, a new JTMT transgenic mouse was designed in which MT overexpression was targeted specifically to endothelial cells. At 60 days of age, JTMT mice were crossed with age‐matched OVE diabetic mice to produce bi‐transgenic OVE‐JTMT diabetic progeny that carried the endothelial targeted JTMT transgene. Renal tissues from the OVE‐JTMT progeny were examined by unbiased TEM stereometry for possible GFB damage and other alterations from chronic complications of DN. In 150 day‐old OVE‐JTMT mice, blood glucose and HbA1c were indistinguishable from age‐matched OVE mice. However, endothelial‐specific MT overexpression in OVE‐JTMT mice mitigated several DN complications including significantly increased non‐fenestrated glomerular endothelial area, and elimination of glomerular basement membrane thickening. Significant renoprotection was also observed outside of endothelial cells, including reduced podocyte effacement, and increased podocyte and total glomerular cell densities. Moreover, when compared to OVE diabetic animals, OVE‐JTMT mice showed significant mitigation of nephromegaly, glomerular hypertrophy, increased mesangial cell numbers and increased total glomerular cell numbers. These results confirm the importance of oxidative stress to glomerular damage in DN, and show the central role of endothelial cell injury to the pathogenesis of chronic complications of diabetes. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:560–576, 2017. © 2016 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Numerous advances have been made in pancreatic β-cell replacement therapies for diabetes mellitus. While these therapies provide a positive impact and possible cure for the individual recipient, access is limited by availability of donor tissues. The derivation of pluripotent stem cells using efficient differentiation technologies has resulted in the generation of insulin-producing cells with characteristics similar to islet β-cells. Experimental transplantation studies have shown that these cells are capable of reducing hyperglycemia in short-term assays. Novel methodologies that facilitate the neogenesis of β-cells from endogenous hepatic or pancreatic tissue sources are also being investigated as a β-cell replacement strategy. Further research is necessary to protect these transplanted or regenerated cells from diabetic autoimmune pathology.
In an effort to test our working hypothesis that diabetes‐induced renal glomerular damage may be the result of oxidative insult, JTMT transgenic mice were produced that overexpress the antioxidant protein metallothionein specifically in endothelial cells. JTMT animals were crossed with severely diabetic OVE transgenic mice to determine whether an endothelial specific antioxidant transgene might provide renoprotection from chronic diabetic complications. In double transgenic 150 day‐old OVE‐JTMT mice, diabetic parameters including blood glucose and HbA1c were indistinguishable from age‐matched OVE mice. However, our data indicate that endothelial‐specific metallothionein overexpression in OVE‐JTMT mice reduced a number of nephropathic complications of diabetes including severe albuminuria. In addition, compared to OVE diabetic mice, double transgenic OVE‐JTMT animals showed significant protection to all major components of the glomerular filtration barrier (i.e. podocyte foot process effacement, glomerular basement membrane thickening, and endothelial damage as evidenced by reduced loss of percent area of glomerular luminal capillary endothelial fenestrations). Moreover, when compared to OVE diabetic animals, OVE‐JTMT mice showed reduced glomerular hypertrophy, lowered mesangial cell density and reduced total glomerular cytoproliferation. These results suggest a direct role of oxidative damage to endothelial cells and indicate that their targeted protection can reduce or delay several features of diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.