How an organism's phenotype responds to both its biotic and abiotic environment is a complex interplay of selection pressures and adaptive tradeoffs. Bathymetric patterns of body size in deep-sea organisms should also reflect both ecological role and taxon-specific constraints, as exemplified in a variety of recent studies. Here, we examine bathymetric size clines in deep-sea ectoparasites, a group that has received little attention in the literature compared to other deep-sea groups. Specifically, we focus on body size in 3 families (21 species) of ptenoglossate gastropods from the deep western North Atlantic, conducting analyses both within and among species. Both quantile and linear regression models yielded non-significant relationships for body size and depth for the 3 most abundant species. Two of the 3 families exhibited positive size-depth relationships, but only in mean size. The findings indicate that resource availability/host size may control parasite density, but dislodgement and predation risk may set a hard upper boundary on body size in deep-sea ectoparasites. Moreover, this study stresses the necessity of understanding the ecological role of species in investigating body size trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.