The columnar cactus Stenocereus stellatus is used in Central Mexico for its edible fruits which are harvested in wild, managed in situ and cultivated populations. Management in situ of wild populations is conducted by selectively sparing and enhancing the abundance of plants with desirable phenotypes when fields are cleared for agricultural use. Cultivation of desirable phenotypes is carried out by vegetative propagation in homegardens. Effects of human management on morphological and genetic variation of S. stellatus were analyzed by comparing morphological diversity indices (MD, based on Simpson's index) and expected (H e ) heterozygosity indices from allozyme analysis, in wild, managed in situ, and cultivated populations from La Mixteca and the Tehuaca´n Valley regions. Morphological diversity was similar among regions, but populations from the wetter La Mixteca region averaged higher genetic variation (H e = 0.279) than populations from Tehuaca´n (H e = 0.265). On average, populations manipulated by people had higher levels of variation (MD = 0.479 ± 0.012, H e = 0.289 in cultivated populations; MD = 0.461 ± 0.014, H e = 0.270 in managed in situ populations) than wild populations (MD = 0.408 ± 0.017, H e = 0.253), which is apparently due to a continual introduction and replacement of plant materials in the manipulated populations. The results illustrate that human management may not only maintain but also increase both morphological and genetic diversity of manipulated plant populations in relation to that existing in the wild. Managed in situ and cultivated populations of S. stellatus are important reservoirs of variation, and are crucial for the general maintenance of diversity in wild populations. These populations may play a principal role in designing strategies for the conservation of variation of this cactus.
Genetic diversity was examined at 16 allozyme loci in 21 wild populations of the medicinal plant American ginseng, Panax quinquefolius L. (Araliaceae). This species has been harvested from forests in North America for more than 250 years. Average expected heterozygosity was significantly greater within protected populations (H(e) = 0.076) than within populations in which harvesting was permitted (H(e) = 0.070). More notably, genetic structure was greater among unprotected populations (G(ST) = 0.491) than among protected populations (G(ST) = 0.167). These differences in the level and distribution of genetic diversity in American ginseng populations indicate that harvesting may have significant evolutionary implications for this species. Age class structure also shifted toward smaller, nonreproductive plants in unprotected populations. Juvenile plants had lower genetic diversity (H(e) = 0.067) than reproductive plants (H(e) = 0.076) suggesting that conserving a proportion of the largest (oldest) plants in each population is important to protect reproductive fitness and the evolutionary potential of the species. Due to its high genetic structure, conservation recommendations include protecting populations throughout the range of P. quinquefolius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.