The role of lipopolysaccharide (LPS) in the pathogenesis of Gram-negative septic shock is well established. The corresponding proinflammatory and immunostimulatory molecule(s) on the Gram-positive bacteria is less well understood, and its identification and characterization would be a key prerequisite in designing specific sequestrants of the Gram-positive endotoxin(s). We report in this paper the comparison of NF-kappaB-, cytokine- and chemokine-inducing activities of the TLR2 ligands, lipoteichoic acid (LTA), peptidoglycan (PGN), and lipopeptides, to LPS, a prototype TLR4 agonist, in murine macrophage cell-lines as well as in human blood. In murine cells, di- and triacyl liopopeptides are equipotent in their NF-kappaB inducing activity relative to LPS, but elicit much lower proinflammatory cytokines. However, both LPS and the lipopeptides potently induce the secretion of a pattern of chemokines that is suggestive of the engagement of a TLR4-independent TRIF pathway. In human blood, although the lipopeptides induce p38 MAP kinase phosphorylation and CD11b upregulation in granulocytes at ng/ml concentrations, they do not elicit proinflammatory cytokine production even at very high doses; LTA, however, activates neutrophils and induces cytokine secretion, although its potency is considerably lower than that of LPS, presumably due to its binding to plasma proteins. We conclude that, in human blood, the pattern of immunostimulation and proinflammatory mediator production elicited by LTA parallels that of LPS.
Just as the prescient comment by Gaston Ramon was relegated to the last footnote of his 1926 paper, 1 so has research on the mechanisms of action of adjuvants, until recently, languished as parenthetical annotations and addenda in the archives of immunology and vaccine development. Ramon defined immunological adjuvants as "substances used in combination with a specific antigen that produced a more robust immune response than the antigen alone." Interestingly enough, he was referring to his empirical findings that the addition of bread crumbs, tapioca, saponin and 'starch oil' to antigenic preparations greatly enhanced antibody responses to diphtheria or tetanus. 2 A year later, the adjuvanticity of aluminum salts (primarily phosphate and hydroxide) was discovered by Glenny and coworkers. 3 In the 83 years that have elapsed, the repertoire of investigational adjuvants has grown to encompass a very wide range of materials, 4 but aluminum salt-based mineral salts (generically, and incorrectly, termed "alum") have remained the only adjuvants currently approved by the FDA. Aluminum salts have enjoyed a good safety record, but they are weak adjuvants for antibody induction and induce a T helper-2 (T H 2)-skewed, rather than a T helper-1 (T H 1) response. 5,6 Furthermore, not only are aluminum salts ineffective at inducing cytotoxic T lymphocyte (CTL) or mucosal IgA antibody responses, but also have a propensity to induce IgE responses, which have been associated with allergic reactions in some subjects. 5,6 Very recent reports implicate the Nalp3 inflammasome, a component of the innate immune response, as the effector limb of alum-associated adjuvanticity. [7][8][9] In 1962, Dresser observed that injection of purified soluble proteins not only failed to stimulate an immune response, but tolerized animals unless a bacterial extract was admixed with the protein immunogen. 10 This led him to redefine adjuvanticity as "a property of a substance which can act as a physiological switch, directing at least some immunologically competent cells to respond by making antibody rather than by becoming immunologically paralyzed by the antigen," 11 confirming Johnson's earlier observations that lipopolysaccharide (LPS) from Gram-negative bacteria exerted potent adjuvant properties, 12 and perhaps paved the way for the subsequent discovery of the wide range of microorganism-derived adjuvants. 13 TLRs are pattern recognition receptors present on diverse cell types that recognize specific molecular patterns present in molecules that are broadly shared by pathogens but distinguishable from host molecules, collectively referred to as pathogen-associated molecular patterns (PAMPs). 14,15 There are 10 TLRs in the human genome;
T cells recognizing self-peptides that mediate autoimmune disease and those that are responsible for efficacious immunity against pathogens may differ in affinity for antigen due to central and peripheral tolerance mechanisms. Here we utilize prototypical self-reactive (myelin) and viral-specific (LCMV) T cells from T cell receptor (TCR) transgenic mice (2D2 and SMARTA, respectively) to explore affinity differences. The T cells responsive to virus possessed >10,000 fold higher 2D affinity as compared to the self-reactive T cells. Despite their dramatically lower affinity for their cognate ligand, 2D2 T cells respond with complete, albeit delayed, activation (proliferation and cytokine production). SMARTA activation occurs rapidly, achieving peak phosphorylation of p38 (1 minute), Erk (30 minutes), and Jun (3 hours) as well as CD69 and CD25 upregulation (3 and 6 hours, respectively), with a corresponding early initiation of proliferation. 2D2 stimulation with MOG results in altered signaling – no phospho-Erk or phospho-p38 accumulation, significantly delayed activation kinetics of Jun (12 hours), and delayed but sustained SHP-1 activity – as well as delayed CD69 and CD25 expression (12–24 hours), and slow initiation of proliferation. This delay was not intrinsic to the 2D2 T cells, as a more potent antigen with >100-fold increased 2D affinity restored rapid response kinetics in line with those identified for the viral antigen. Taken together, these data demonstrate that time can offset low TCR affinity to attain full activation and suggest a mechanism by which low affinity T cells participate in autoimmune disease.
The T cell receptor (TCR) interacts with peptide-major histocompatibility complex (pMHC) to enable T cell development and trigger adaptive immune responses. For this reason, TCR:pMHC interactions have been intensely studied for over two decades. However, the details of how various binding parameters impact T cell activation remain elusive. Most measurements were made using recombinant proteins by surface plasmon resonance, a three-dimensional (3D) technique in which fluid-phase receptors and ligands are removed from their cellular environment. This approach found TCR:pMHC interactions with relatively low affinities and slow off-rates for agonist peptides. Newer generation techniques have analyzed TCR:pMHC interactions in two dimensions (2D), with both proteins anchored in apposing plasma membranes. These approaches reveal in situ TCR:pMHC interaction kinetics that are of high affinity and exhibit rapid on- and off-rates upon interaction with agonist ligands. Importantly, 2D binding parameters correlate better with T cell functional responses to a spectrum of ligands than 3D measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.