Next-generation ancient DNA technologies have the potential to assist in the analysis of degraded DNA extracted from forensic specimens. Mitochondrial genome (mitogenome) sequencing, specifically, may be of benefit to samples that fail to yield forensically relevant genetic information using conventional PCR-based techniques. This report summarizes the Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory's (AFMES-AFDIL) performance evaluation of a Next-Generation Sequencing protocol for degraded and chemically treated past accounting samples. The procedure involves hybridization capture for targeted enrichment of mitochondrial DNA, massively parallel sequencing using Illumina chemistry, and an automated bioinformatic pipeline for forensic mtDNA profile generation. A total of 22 non-probative samples and associated controls were processed in the present study, spanning a range of DNA quantity and quality. Data were generated from over 100 DNA libraries by ten DNA analysts over the course of five months. The results show that the mitogenome sequencing procedure is reliable and robust, sensitive to low template (one ng control DNA) as well as degraded DNA, and specific to the analysis of the human mitogenome. Haplotypes were overall concordant between NGS replicates and with previously generated Sanger control region data. Due to the inherent risk for contamination when working with low-template, degraded DNA, a contamination assessment was performed. The consumables were shown to be void of human DNA contaminants and suitable for forensic use. Reagent blanks and negative controls were analyzed to determine the background signal of the procedure. This background signal was then used to set analytical and reporting thresholds, which were designated at 4.0X (limit of detection) and 10.0X (limit of quantiation) average coverage across the mitogenome, respectively. Nearly all human samples exceeded the reporting threshold, although coverage was reduced in chemically treated samples resulting in a ∼58% passing rate for these poor-quality samples. A concordance assessment demonstrated the reliability of the NGS data when compared to known Sanger profiles. One case sample was shown to be mixed with a co-processed sample and two reagent blanks indicated the presence of DNA above the analytical threshold. This contamination was attributed to sequencing crosstalk from simultaneously sequenced high-quality samples to include the positive control. Overall this study demonstrated that hybridization capture and Illumina sequencing provide a viable method for mitogenome sequencing of degraded and chemically treated skeletal DNA samples, yet may require alternative measures of quality control.
The FORensic Capture Enrichment (FORCE) panel is an all-in-one SNP panel for forensic applications. This panel of 5422 markers encompasses common, forensically relevant SNPs (identity, ancestry, phenotype, X- and Y-chromosomal SNPs), a novel set of 3931 autosomal SNPs for extended kinship analysis, and no clinically relevant/disease markers. The FORCE panel was developed as a custom hybridization capture assay utilizing ~20,000 baits to target the selected SNPs. Five non-probative, previously identified World War II (WWII) cases were used to assess the kinship panel. Each case included one bone sample and associated family reference DNA samples. Additionally, seven reference quality samples, two 200-year-old bone samples, and four control DNAs were processed for kit performance and concordance assessments. SNP recovery after capture resulted in a mean of ~99% SNPs exceeding 10X coverage for reference and control samples, and 44.4% SNPs for bone samples. The WWII case results showed that the FORCE panel could predict first to fifth degree relationships with strong statistical support (likelihood ratios over 10,000 and posterior probabilities over 99.99%). To conclude, SNPs will be important for further advances in forensic DNA analysis. The FORCE panel shows promising results and demonstrates the utility of a 5000 SNP panel for forensic applications.
The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.
The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome) of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano–Christian cemetery, Kellis 2 (K2). K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS) performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA). These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano–Christian period.
In 1990 in Griswold, Connecticut, archaeologists excavated a burial found in a “skull and crossbones” orientation. The lid of the 19th century coffin had brass tacks that spelled “JB55”, the initials of the person lying there and age at death. JB55 had evidence of chronic pulmonary infection, perhaps tuberculosis. It is possible that JB55 was deemed a vampire due to his disease, and therefore had to be “killed” by mutilating his corpse. In an attempt to reveal the identity of JB55, DNA testing was performed. Ancestry informative single nucleotide polymorphism (SNP) analysis using the Precision ID Ancestry Panel indicated European ancestry. A full Y-chromosomal short tandem repeat (Y-STR) profile was obtained, belonging to haplogroup R1b. When the Y-STR profile was searched in the publicly accessible FamilyTreeDNA R1b Project website, the two closest matches had the surname “Barber”. A search of historical records led to a death notice mentioning John Barber, whose son Nathan Barber was buried in Griswold in 1826. The description of Nathan Barber closely fits the burial of “NB13,” found near JB55. By applying modern forensic DNA tools to a historical mystery, the identity of JB55 as John Barber, the 19th century Connecticut vampire, has been revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.