Optimal management of thermal energy storage in a building is essential to provide predictable energy flexibility to a smart grid. Active technologies such as Electric Thermal Storage (ETS) can assist in building heating load management and can complement the building’s passive thermal storage capacity. The presented paper outlines a methodology that utilizes the concept of Building Energy Flexibility Index (BEFI) and shows that implementing Model Predictive Control (MPC) with dedicated thermal storage can provide predictable energy flexibility to the grid during critical times. When the utility notifies the customer 12 h before a Demand Response (DR) event, a BEFI up to 65 kW (100% reduction) can be achieved. A dynamic rate structure as the objective function is shown to be successful in reducing the peak demand, while a greater reduction in energy consumption in a 24-hour period is seen with a rate structure with a demand charge. Contingency reserve participation was also studied and strategies included reducing the zone temperature setpoint by 2∘C for 3 h or using the stored thermal energy by discharging the device for 3 h. Favourable results were found for both options, where a BEFI of up to 47 kW (96%) is achieved. The proposed methodology for modeling and evaluation of control strategies is suitable for other similar convectively conditioned buildings equipped with active and passive storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.