ABSTRACT. Three species of wolffish have been listed under Canada's Species at Risk Act with consequences for commercial fisheries. Because harvester based local ecological knowledge (LEK) and science knowledge differ in goals, spatial and temporal scale, and mode of generalization, the current system struggles with including LEK along with traditional assessments in species at risk (SARA) processes. The differences in LEK and science led us to consider the concept of consilience in the sense of strengthened inductive knowledge via convergence or concordance of evidence from disparate sources. We used three criteria when considering consilience: a general concurrence of data, presence of unexplained inconsistencies, and a degree of complementarity between two disparate sources. Using wolffish in the northern Gulf of St. Lawrence we examined the feasibility of applying these criteria to two disparate sources of information: scientific stock assessments and data from structured fish harvester local ecological knowledge (LEK) interviews. We found that for wolffish there was consistency in observed trends and locations of high wolffish catch rates from both harvester LEK interviews and fishery-independent survey data. There was inconsistency between observed variability in catch sizes in harvester interviews and stock assessment maps. The science and LEK evidence were complementary in that observations took place at different spatial and temporal scales. They were complementary in that LEK was inshore, compared to science data from offshore. The explicit criteria we developed permit use of fishers' knowledge that, in the past, has often been discounted to zero, often thereby reducing trust by harvesters in the results of species at risk assessments. The concept of consilience shifts the focus from controversy to dialogue in the use of evidence and, so, is important in rebuilding marine fishing communities.
Soy protein concentrates and soy protein isolates act as ingredients in bakery, meat and dairy products, baby formulas, starting materials for spun textured vegetable products, and other nutritional supplements. In this study, the effectiveness of a liquid-solid circulating fluidized bed (LSCFB) ion exchanger is demonstrated for the recovery of soluble soy proteins from full fat and defatted soy flour. Under steady-state operating conditions, about 50% of the proteins could be recovered from the feed streams entering the ion exchanger. The LSCFB was shown to be a promising system for the recovery of soy protein from both defatted and full fat soy flour solutions. As the ion exchange process captures dissolved proteins, the system may offer a less damaging form of processing compared with the acid precipitation process where soy protein aggregates form and functionality is affected. In addition, the LSCFB allows simultaneous adsorption and desorption of the proteins allowing for a continuous operation. No prefiltration of feed containing suspended particles is required as well, because fluidization is used in place of packed bed technology to improve on current ion exchange processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.