Mantle cell lymphoma (MCL) is a specific type of aggressive B-cell non-Hodgkin lymphoma. We recently found that IL-22RA1, one of the two subunits of the interleukin 22 (IL-22) receptor, is expressed in MCL cell lines but not benign lymphocytes. In view of normal functions of IL-22 signaling, we hypothesized that the aberrant expression of IL-22RA1 may contribute to the deregulation of various cell signaling pathways, thereby promoting cell growth in MCL. In this study, we first demonstrated the expression of IL-22RA1 in all three MCL cell lines and eight frozen tumors examined using reverse transcription-polymerase chain reaction and Western blot analysis. In support of the concept that IL-22 signaling is biologically important in MCL, we found that MCL cells treated with recombinant IL-22 had a significant increase in cell growth that was associated with STAT3 activation. To investigate the mechanism underlying the aberrant expression of IL-22RA1, we analyzed the gene promoter of IL-22RA1, and we found multiple binding sites for NF-κB, a transcriptional factor strongly implicated in the pathogenesis of MCL. Pharmacologic inhibition of NF-κB resulted in a substantial reduction in the level of IL-22RA1 protein expression in MCL cells. To conclude, IL-22RA is aberrantly expressed in MCL, and we have provided evidence that IL-22 signaling contributes to the pathogenesis of MCL.
Interleukin-21 (IL-21) has been recently shown to modulate the growth of specific types of B-cell neoplasm. Here, we studied the biological effects of IL-21 in mantle cell lymphoma (MCL). All MCL cell lines and tumors examined expressed the IL-21 receptor. Addition of recombinant IL-21 (rIL-21) in vitro effectively induced STAT1 activation and apoptosis in MCL cells. As STAT1 is known to have tumor-suppressor functions, we hypothesized that STAT1 is important in mediating IL-21-induced apoptosis in MCL cells. In support of this hypothesis, inhibition of STAT1 expression using siRNA significantly decreased the apoptotic responses induced by IL-21. To further investigate the mechanism of IL-21-mediated apoptosis, we employed oligonucleotide arrays to evaluate changes in the expression of apoptosis-related genes induced by rIL-21; rIL-21 significantly upregulated three proapoptotic proteins (BIK, NIP3 and HARAKIRI) and downregulated two antiapoptotic proteins (BCL-2 and BCL-XL/S) as well as tumor necrosis factor-a. Using an ELISA-based assay, we demonstrated that rIL-21 significantly decreased the DNA binding of nuclear factor-jB, a transcriptional factor known to be a survival signal for MCL cells. To conclude, IL-21 can effectively induce apoptosis in MCL via a STAT1-dependent pathway. Further understanding of IL-21-mediated apoptosis in MCL may be useful in designing novel therapeutic approaches for this disease.
Purpose: Antimicrobial resistance (AMR) is a public health threat where efficient surveillance is needed to prevent outbreaks. Existing methods for detection of gastrointestinal colonization of multidrug-resistant organisms (MDRO) are limited to specific organisms or resistance mechanisms. Metagenomic next-generation sequencing (mNGS) is a more rapid and agnostic diagnostic approach for microbiome and resistome investigations. We determined if mNGS can detect MDRO from rectal swabs in concordance with standard microbiology results.Methods: We performed and compared mNGS performance on short-read Illumina MiSeq (N=10) and long-read Nanopore MinION (N=4) platforms directly from peri-rectal swabs to detect vancomycin-resistant enterococci (VRE) and carbapenem-resistant Gram-negative organisms (CRO).Results: We detected E. faecium (N=8) and E. faecalis (N=2) with associated van genes (9/10) in concordance with VRE culture-based results. We studied the microbiome and identified CRO organisms, P. aeruginosa (N=1), E. cloacae (N=1), and KPC-producing K. pneumoniae (N=1).Nanopore real-time detection detected the bla KPC gene in 2.5 minutes and provided genetic context (bla KPC harbored on pKPC_Kp46 IncF plasmid). Illumina sequencing provided accurate allelic variant determination (i.e., bla KPC-2 ) and strain typing of the K. pneumoniae (ST-15).Conclusions: We demonstrated an agnostic approach for surveillance of MDRO, examining advantages of both short and long-read mNGS methods for AMR detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.