Telomere length (TL) is considered an important biomarker of whole-organism health and aging. Across humans and other vertebrates, short telomeres are associated with increased subsequent mortality risk, but the processes responsible for this correlation remain uncertain. A key unanswered question is whether TL–mortality associations arise due to positive effects of genes or early-life environment on both an individual’s average lifetime TL and their longevity, or due to more immediate effects of environmental stressors on within-individual TL loss and increased mortality risk. Addressing this question requires longitudinal TL and life history data across the entire lifetimes of many individuals, which are difficult to obtain for long-lived species like humans. Using longitudinal data and samples collected over nearly two decades, as part of a long-term study of wild Soay sheep, we dissected an observed positive association between TL and subsequent survival using multivariate quantitative genetic models. We found no evidence that telomere attrition was associated with increased mortality risk, suggesting that TL is not an important marker of biological aging or exposure to environmental stress in our study system. Instead, we find that among-individual differences in average TL are associated with increased lifespan. Our analyses suggest that this correlation between an individual’s average TL and lifespan has a genetic basis. This demonstrates that TL has the potential to evolve under natural conditions, and suggests an important role of genetics underlying the widespread observation that short telomeres predict mortality.
Prevalence of sarcopenia is up to 60% of those individuals over 80 years of age and is associated with increased disability. The causes behind the age-related loss of muscle are difficult to discern. Measurements of protein synthesis/breakdown and net protein balance are important, and further methodological development is warranted. Whole body protein turnover is changed only little - if at all - with ageing, when corrected for fat free mass of the individuals. Discrepancies in reports are often related to inconsistent recordings of energy intake especially protein and variation in subject, gender and physical activity level. Ageing is associated with reduced sensitivity toward amino acids, increased first pass uptake in a splanchnic region and a reduced postprandial stimulation of protein synthesis. Physical activity and amino acids are additive in effect also in elderly individuals, and timing of training and protein intake is crucial, in that early intake of amino acids is advantageous with regards to stimulation of protein synthesis.
These results indicate that the telomerase promoters have the capacity to drive the expression of the NAT. The potency of [(211)At]MABG is approximately three orders of magnitude greater than that of [(131)I]MIBG. Spheroids composed of only 5% of cells expressing NAT under the control of the RSV or hTERT promoter were sterilised by radiopharmaceutical treatment. This observation is indicative of bystander cell-kill.
Genetic conflict is considered a key driver in the evolution of reproductive systems with non-Mendelian inheritance, where parents do not contribute equally to the genetic makeup of their offspring. One of the most extraordinary examples of non-Mendelian inheritance is paternal genome elimination (PGE), a form of haplodiploidy which has evolved repeatedly across arthropods. Under PGE, males are diploid but only transmit maternally-inherited chromosomes, while the paternally-inherited homologues are excluded from sperm. This asymmetric inheritance is thought to have evolved through an evolutionary arms race between the paternal and maternal genomes over transmission to future generations. In several PGE clades, such as the mealybugs (Hemiptera: Pseudococcidae), paternal chromosomes are not just eliminated from sperm, but also heterochromatinised early in development and thought to remain inactive, which could result from genetic conflict between parental genomes. Here, we present a parent-of-origin allele-specific transcriptome analysis in male mealybugs showing that expression is globally biased towards the maternal genome. However, up to 70% of somatically-expressed genes are to some degree paternally-expressed, while paternal genome expression is much more restricted in the male reproductive tract, with only 20% of genes showing paternal contribution. We also show that parent-of-origin-specific gene expression patterns are remarkably similar across genotypes, and that genes with completely biparental expression show elevated rates of molecular evolution. Our results provide the clearest example yet of genome-wide genomic imprinting in insects and enhance our understanding of PGE, which will aid future empirical tests of evolutionary theory regarding the origin of this unusual reproductive strategy.
Telomere length is predictive of adult health and survival across vertebrate species. However, we currently do not know whether such associations result from among-individual differences in telomere length determined genetically or by early-life environmental conditions, or from differences in the rate of telomere attrition over the course of life that might be affected by environmental conditions. Here, we measured relative leukocyte telomere length (RLTL) multiple times across the entire lifespan of dairy cattle in a research population that is closely monitored for health and milk production and where individuals are predominantly culled in response to health issues. Animals varied in their change in RLTL between subsequent measurements and RLTL shortened more during early life and following hotter summers which are known to cause heat stress in dairy cows. The average amount of telomere attrition calculated over multiple repeat samples of individuals predicted a shorter productive lifespan, suggesting a link between telomere loss and health. TL attrition was a better predictor of when an animal was culled than their average TL or the previously for this population reported significant TL at the age of 1 year. Our present results support the hypothesis that TL is a flexible trait that is affected by environmental factors and that telomere attrition is linked to animal health and survival traits. Change in telomere length may represent a useful biomarker in animal welfare studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.