We report a method for studying membrane fusion, focusing on influenza virus fusion to lipid bilayers, which provides high temporal resolution through the rapid and coordinated initiation of individual virus fusion events. Each fusion event proceeds through a series of steps, much like multi step chemical reaction. Fusion is initiated by a rapid decrease in pH that accompanies the `uncaging' of an effector molecule from o-nitrobenzaldehyde, a photoisomerizable compound that releases a proton to the surrounding solution within microseconds of long-wave ultraviolet irradiation. In order to quantify pH values upon UV irradiation and uncaging, we introduce a simple silica nanoparticle pH sensor, useful for reporting the pH in homogeneous nanoliter volumes under conditions where traditional organic dye-type pH probes fail. Subsequent single-virion fusion events are monitored using total internal reflection fluorescence microscopy. Statistical analysis of these stochastic events uncovers kinetic information about the fusion reaction. This approach reveals that the kinetic parameters obtained from the data are sensitive to the rate at which protons are delivered to the bound viruses. Higher resolution measurements can enhance fundamental fusion studies and aid anti-viral anti-fusogenic drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.