In many countries across the world, fossil fuels, especially petroleum, are the largest energy source for powering the socioeconomic system, and the transportation sector dominates the consumption of petroleum in these societies. As the petroleum price continuously climbs and the threat of global climate changes becomes more evident, the world is now facing critical challenges in reducing petroleum consumption and exploiting alternative energy sources. A massive adoption of plug-in electric vehicles (PEVs), especially battery electric vehicles (BEVs), offers a very promising approach to changing the current energy consumption structure and diminishing greenhouse gas emissions and other pollutants. Understanding how individual electric vehicle drivers behave subject to the technological restrictions and infrastructure availability and estimating the resulting aggregate supply-demand effects on urban transportation systems is not only critical to transportation infrastructure development, but also has determinant implications in environmental and energy policy enactment. This paper presents an Accepted by EURO Journal on Transportation and Logistics for publication.
Decisions to improve a regional transportation network are often based on predictions of future link flows that assume future travel demand is a deterministic matrix. Despite broad awareness of the uncertainties inherent in forecasts, rarely are uncertainties considered explicitly within the methodological framework due at least in part to a lack of knowledge as to how uncertainties affect the optimality of decisions. This article seeks to address this issue by presenting a new method for evaluating future travel demand uncertainty and finding an efficient technique for generating multiple realizations of demand. The proposed method employs Hypersphere Decomposition, Cholesky Decomposition, and user equilibrium traffic assignment. Numerical results suggest that neglecting correlations between the future demands of travel zone pairs can lead to improvement decisions that are less robust and could frequently rank improvements improperly. Of the six sampling techniques employed, Antithetic sampling generated travel demand realizations with the least relative bias and error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.