According to the American Diabetes Association, diabetes was the seventh leading cause of death, and diabetic retinopathy the leading cause of blindness in working age adults in the United States in 2010. Diabetes is characterized by hyperglycemia associated with either hypoinsulinemia or insulin resistance, and over time, this chronic metabolic condition may lead to various complications including kidney failure, heart attacks, and retinal degeneration. In order to better understand the molecular basis of this disease and its complications, animal models have been the primary approach used to investigate the effects of diabetes on various tissues or cell types of the body, including the retina. However, inherent to these animal models are critical limitations that make the insight gained from these models challenging to apply to the human pathology. These difficulties in translating the knowledge obtained from animal studies have led a growing number of research groups to explore the diabetes complications, especially diabetic retinopathy, on tissues from human donors. This review summarizes the data collected from diabetic patients at various stages of diabetic retinopathy and classifies the data based upon their relevance to the main aspects of diabetic retinopathy: retinal vasculature dysfunction, inflammation, and neurodegeneration. This review discusses the importance of those studies to discriminate and establish the relevance of the findings obtained from animal models but also the limitations of such approaches.
Molecular chaperones play a significant role in preventing protein misfolding and aggregation. Indeed, some protein conformational disorders have been linked to changes in the chaperone network. Curiously, in yeast, chaperones also play a role in promoting prion maintenance and propagation. While many amyloidogenic proteins are associated with disease in mammals, yeast prion proteins, and their ability to undergo conformational conversion into a prion state, are proposed to play a functional role in yeast biology. The chaperone Hsp104, a AAA+ ATPase, is essential for yeast prion propagation. Hsp104 fragments large prion aggregates to generate a population of smaller oligomers that can more readily convert soluble monomer and be transmitted to daughter cells. Here, we show that the middle (M) domain of Hsp104, and its mobility, plays an integral part in prion propagation. We generated and characterized mutations in the M-domain of Hsp104 that are predicted to stabilize either a repressed or de-repressed conformation of the M-domain (by analogy to ClpB in bacteria). We show that the predicted stabilization of the repressed conformation inhibits general chaperone activity. Mutation to the de-repressed conformation, however, has differential effects on ATP hydrolysis and disaggregation, suggesting that the M-domain is involved in coupling these two activities. Interestingly, we show that changes in the M-domain differentially affect the propagation of different variants of the [PSI+] and [RNQ+] prions, which indicates that some prion variants are more sensitive to changes in the M-domain mobility than others. Thus, we provide evidence that regulation of the M-domain of Hsp104 is critical for efficient prion propagation. This shows the importance of elucidating the function of the M-domain in order to understand the role of Hsp104 in the propagation of different prions and prion variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.