Klebsiella pneumoniae is a pathogen of increasing concern because of multidrug resistance, especially due to K. pneumoniae carbapenemases (KPCs). K. pneumoniae must acquire iron to replicate, and it utilizes ironscavenging siderophores, such as enterobactin (Ent). The innate immune protein lipocalin 2 (Lcn2) is able to specifically bind Ent and disrupt iron acquisition. To determine whether K. pneumoniae must produce Lcn2-resistant siderophores to cause disease, we examined siderophore production by clinical isolates (n ؍ 129) from respiratory, urine, blood, and stool samples and by defined siderophore mutants through genotyping and liquid chromatography-mass spectrometry. Three categories of K. pneumoniae isolates were identified: enterobactin positive (Ent ؉ ) (81%), enterobactin and yersiniabactin positive (Ent ؉ Ybt ؉ ) (17%), and enterobactin and salmochelin (glycosylated Ent) positive (Ent ؉ gly-Ent ؉ ) with or without Ybt (2%). Ent ؉ Ybt ؉ strains were significantly overrepresented among respiratory tract isolates (P ؍ 0.0068) and -lactam-resistant isolates (P ؍ 0.0019), including the epidemic KPC-producing clone multilocus sequence type 258 (ST258). In ex vivo growth assays, gly-Ent but not Ybt allowed evasion of Lcn2 in human serum, whereas siderophores were dispensable for growth in human urine. In a murine pneumonia model, an Ent ؉ strain was an opportunistic pathogen that was completely inhibited by Lcn2 but caused severe, disseminated disease in Lcn2 ؊/؊ mice. In contrast, an Ent ؉ Ybt ؉ strain was a frank respiratory pathogen, causing pneumonia despite Lcn2. However, Lcn2 retained partial protection against disseminated disease. In summary, Ybt is a virulence factor that is prevalent among KPC-producing K. pneumoniae isolates and promotes respiratory tract infections through evasion of Lcn2.
Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution towards a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is caused by parallel point mutations in a flagellar synthesis regulator, FleN, which locks the naturally mono-flagellated bacteria in a multi-flagellated state and confers a growth-rate independent advantage in swarming. Even though hyperswarmers outcompete the ancestral strain in swarming competitions, they are strongly outcompeted in biofilm formation, which is an essential trait for P. aeruginosa in environmental and clinical settings. The finding that evolution in swarming colonies reliably produces evolution of poor biofilm formers supports the existence of an evolutionary tradeoff between motility and biofilm formation.
Pathogenic bacteria require iron for replication within their host. Klebsiella pneumoniae and other Gram-negative pathogens produce the prototypical siderophore enterobactin (Ent) to scavenge iron in vivo. In response, mucosal surfaces secrete lipocalin 2 (Lcn2), an innate immune protein that binds Ent to disrupt bacterial iron acquisition and promote acute inflammation during colonization. A subset of K. pneumoniae isolates attempt to evade Lcn2 by producing glycosylated Ent (Gly-Ent, salmochelin) or the alternative siderophore yersiniabactin (Ybt). However, these siderophores are not functionally equivalent and differ in their abilities to promote growth in the upper respiratory tract, lungs, and serum. To understand how Lcn2 exploits functional differences between siderophores, isogenic mutants of an Ent+ Gly-Ent+ Ybt+ K. pneumoniae strain were inoculated into Lcn2+/+ and Lcn2−/− mice, and the pattern of pneumonia was examined. Lcn2 effectively protected against the iroA ybtS mutant (Ent+ Gly-Ent− Ybt−). Lcn2+/+ mice had small foci of pneumonia, whereas Lcn2−/− mice had many bacteria in the perivascular space. The entB mutant (Ent− Ybt+ Gly-Ent−) caused moderate bronchopneumonia but did not invade the transferrin-containing perivascular space. Accordingly, transferrin blocked Ybt-dependent growth in vitro. The wild type and the iroA mutant, which both produce Ent and Ybt, had a mixed phenotype, causing a moderate bronchopneumonia in Lcn2+/+ mice and perivascular overgrowth in Lcn2−/− mice. Together, these data indicate that Lcn2, in combination with transferrin, confines K. pneumoniae to the airways and prevents invasion into tissue containing the pulmonary vasculature.
Preventing unfavorable graft-versus-host disease (GVHD) without inducing broad suppression of the immune system presents a major challenge of allogeneic hematopoietic stem cell transplantation. We developed a novel strategy to ameliorate GVHD while preserving graft-versus-tumor (GVT) activity by small molecule-based inhibition of the NF-κB family member c-Rel. Underlying mechanisms included reduced alloactivation, defective gut homing, and impaired negative feedback on IL-2 production resulting in optimal IL-2 levels, which, in the absence of competition by effector T-cells, translated into expansion of regulatory T-cells. c-Rel activity was dispensable for antigen-specific T-cell receptor activation, allowing c-Rel-deficient T-cells to display normal GVT activity. In addition, inhibition of c-Rel activity reduced alloactivation without compromising antigen-specific cytotoxicity of human T-cells. Finally, we were able to demonstrate feasibility and efficacy of systemic c-Rel inhibitor administration. Our findings validate c-Rel as a promising target for immunomodulatory therapy and demonstrate feasibility and efficacy of pharmaceutical inhibition of c-Rel activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.