Germline mutations of the BRCA1 gene account for approximately 5% of breast and ovarian cancer cases, and lower than normal BRCA1 expression or function may be an important contributing factor in sporadic cancers. The major role of BRCA1 is to respond to DNA damage by participating in cellular pathways for DNA repair, mRNA transcription, cell cycle regulation, and protein ubiquitination. Because most chemotherapeutic agents function by directly or indirectly damaging DNA, the role of BRCA1 as a regulator of chemotherapy-induced DNA damage has been the subject of an increasing number of investigations. We review published preclinical and clinical evidence that the level of BRCA1 function in an individual patient's tumor can guide the choice of chemotherapeutic agents for breast and ovarian cancer. We conclude that a loss of BRCA1 function is associated with sensitivity to DNA-damaging chemotherapy and may also be associated with resistance to spindle poisons. We recommend that prospective clinical studies investigating the role of BRCA1 in the response to chemotherapy be conducted.
The exact functions of BRCA1 have not been fully described but it now seems apparent that it has roles in DNA damage repair, transcriptional regulation, cell cycle control and most recently in ubiquitylation. These functions of BRCA1 are most likely interdependent but this review will focus on the role of BRCA1 in relation to transcriptional regulation and in particular how this impacts upon cell cycle control. We will (i) describe the structure of BRCA1 and how it may contribute to its transcription function; (ii) describe the interaction of BRCA1 with the core transcriptional machinery (RNA polII); (iii) describe how BRCA1 may regulate transcription at an epigenetic level through chromatin modification; (iv) discuss the role of BRCA1 in modulating transcription through its association with sequence-specific transcription factors. Finally, we will discuss the possible effects of BRCA1 transcriptional regulation on downstream targets with known roles in cell cycle control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.