Clonal expansion of premalignant lesions is an important step in the progression to cancer. This process is commonly considered to be a consequence of sustaining a proliferative mutation. Here, we investigate whether the growth trajectory of clones can be better described by a model in which clone growth does not depend on a proliferative advantage. We developed a simple computer model of clonal expansion in an epithelium in which mutant clones can only colonize space left unoccupied by the death of adjacent normal stem cells. In this model, competition for space occurs along the frontier between mutant and normal territories, and both the shapes and the growth rates of lesions are governed by the differences between mutant and normal cells' replication or apoptosis rates. The behavior of this model of clonal expansion along a mutant clone's frontier, when apoptosis of both normal and mutant cells is included, matches the growth of UVB-induced p53-mutant clones in mouse dorsal epidermis better than a standard exponential growth model that does not include tissue architecture. The model predicts precancer cell mutation and death rates that agree with biological observations. These results support the hypothesis that clonal expansion of premalignant lesions can be driven by agents, such as ionizing or nonionizing radiation, that cause cell killing but do not directly stimulate cell replication.clonal expansion ͉ computer simulation ͉ skin cancer ͉ TP53 ͉ UVB
<div>AbstractPurpose:<p>Ewing sarcoma (EwS) is a highly malignant pediatric tumor characterized by a non-T-cell-inflamed immune-evasive phenotype. When relapsed or metastasized, survival is poor, emphasizing the need for novel treatment strategies. Here, we analyze the novel combination approach using the YB-1-driven oncolytic adenovirus XVir-N-31 and CDK4/6 inhibition to augment EwS immunogenicity.</p>Experimental Design:<p><i>In vitro</i>, viral toxicity, replication, and immunogenicity were studied in several EwS cell lines. <i>In vivo</i> tumor xenograft models with transient humanization were applied to evaluate tumor control, viral replication, immunogenicity, and dynamics of innate as well as human T cells after treatment with XVir-N-31 combined with CDK4/6 inhibition. Furthermore, immunologic features of dendritic cell maturation and T-cell-stimulating capacities were assessed.</p>Results:<p>The combination approach significantly increased viral replication and oncolysis <i>in vitro</i>, induced HLA-I upregulation, and IFNγ-induced protein 10 expression and enhanced maturation of monocytic dendritic cells with superior capacities to stimulate tumor antigen-specific T cells. These findings were confirmed <i>in vivo</i> showing tumor infiltration by (i) monocytes with antigen-presenting capacities and M1 macrophage marker genes, (ii) T<sub>Reg</sub> suppression in spite of adenovirus infection, (iii) superior engraftment, and (iv) tumor infiltration by human T cells. Consequently, survival was improved over controls with signs of an abscopal effect after combination treatment.</p>Conclusions:<p>The joint forces of the YB-1-driven oncolytic adenovirus XVir-N-31 and CDK4/6 inhibition induce therapeutically relevant local and systemic antitumor effects. Innate as well as adaptive immunity against EwS is boosted in this preclinical setting, pointing toward high therapeutic potential in the clinic.</p></div>
Ewing’s sarcoma (EwS) is a pediatric solid tumor entity with low somatic mutational burden and a low rate of tumor-infiltrating T cells, indicating a low extent of immunogenicity. In EwS, immunogenicity may furthermore be significantly diminished by a predominantly M2 macrophage driven pro-tumorigenic tumor microenvironment. In the past, we demonstrated that CHM1319-specific TCR-transgenic T cells are able to control EwS growth in a preclinical mouse model as well as in a patient with metastatic disease. However, new adjuvant techniques to induce long lasting and curative CHM1319-specific TCR-transgenic T cell-mediated anti-tumor responses are needed. In this work, we sought to identify a technique to improve the cytotoxic effect of CHM1319-specific TCR-transgenic T cell by altering the immunogenic cell surface marker expression on EwS cell lines using different cytokines. We demonstrate that TNF, IL-6, IL-1β and PGE2 cause pro-immunogenic CD83, MHC class I and II as well as ICAM-1 upregulation in EwS cell lines. This observation was associated with significantly improved recognition and killing of the tumor cells by EwS-specific CHM1319/HLA-A*02:01-restricted TCR-transgenic T cells. Conclusively, we demonstrate that the induction of an inflammatory signature renders EwS more susceptible to adoptive T cell therapy. TNF, which is upregulated during inflammatory processes, is of particular translational interest as its secretion may be induced in the patients e.g., by irradiation and hyperthermia in the clinical setting. In future clinical protocols, this finding may be important to identify appropriate conditioning regimens as well as point of time for adoptive T cell-based immunotherapy in EwS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.