Restrictions on the use of polybrominated diphenyl ethers (PBDEs) have resulted in the increased use of alternate flame retardant chemicals to meet flammability standards. However, it has been difficult to determine which chemical formulations are currently being used in high volumes to meet flammability standards since the use of flame retardant formulations in consumer products is not transparent (i.e. not provided to customers). To investigate chemicals being used as replacements for PentaBDE in polyurethane foam, we analyzed foam samples from 26 different pieces of furniture purchased in the United States primarily between 2003 and 2009 using gas chromatography mass spectrometry. Samples included foam from couches, chairs, mattress pads, pillows, and, in one case, foam from a sound proofing system of a laboratory grade dust sieve. Fifteen of the foam samples contained the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP; 1-5% by weight), four samples contained tris(1-chloro-2-propyl) phosphate (TCPP; 0.5 -2.2 % by weight), one sample contained brominated chemicals found in a new flame retardant mixture called Firemaster 550 (4.2% by weight), and one foam sample collected from a futon likely purchased prior to 2004 contained PentaBDE (0.5% by weight). Due to the high frequency of detection of the chlorinated phosphate compounds in furniture foam, we analyzed extracts from 50 house dust samples collected between 2002 and 2007 in the Boston, MA area for TDCPP, TCPP, and another high volume use organophosphate-based flame retardant used in foam, triphenylphosphate (TPP). Detection frequencies for TDCPP and TPP in the dust samples were >96% and were log normally distributed, similar to observations for PBDEs. TCPP was positively detected in dust in only 24% of the samples, but detection was significantly limited by a co-elution problem. The geometric mean concentrations for TCPP, TDCPP and TPP in house dust were 570, 1890, and 7360 ng/g, respectively, and maximum values detected in dust were 5490, 56,080 and 1,798,000 ng/g, respectively. These data suggest that levels of these organophosphate flame retardants are comparable, or in some cases, greater than, levels of PBDEs in house dust. The high prevalence of these chemicals in foam and the high concentrations measured in dust (as high as 1.8 mg/g), warrant further studies to evaluate potential health effects from dust exposure, particularly for children.
Most reports of cortisol half-life in the literature report a range of 90-130 min, which results are based on descriptive model that assumes mono-exponential decay of a single, total cortisol compartment. Free cortisol half-life has been similarly assessed using a descriptive single compartment model (1). However, the descriptive model is not physiologic in view of the rapid exchange between protein-bound and free cortisol compartments and evidence that metabolic elimination is restricted to the free cortisol compartment. In the present study, we sought to explore potential limitations of the descriptive, single-compartment model for cortisol elimination by assessing the influence of CBG concentration ([CBG]) on cortisol half-life estimates obtained using the descriptive model. We studied the influence of [CBG] and other variables on descriptive cortisol half-life using a Monte Carlo simulation of cortisol concentration decay curves developed using data from healthy controls (1). Total cortisol concentration ([TF]) curves were generated on the basis of 4 predictor variables: (i) [CBG], (ii) albumin concentration, (iii) [TF] at time zero following iv bolus (total cortisol at time 0, y-intercept), and (iv) free cortisol half-life central to a mechanistic (dynamic, 3-compartment) model (2). Simulations used a multivariable normal distribution and selected means, SDs, and correlation structure among these 4 variables in healthy controls. After generation of a series of cortisol decay curves (n=1000), half-lives for total and free cortisol were solved using the conventional (descriptive, single-compartment) model. The influence of predictor variables on conventional half-life estimates were assessed using standardized beta (STB) coefficients, which represent change in the SD of the outcome (numerator, i.e. total or free cortisol half-life obtained by descriptive model) for each SD change in a predictor (denominator) in a multivariable context (3). For total cortisol half-life (descriptive model) STBs were 0.91 ([CBG]), 0.73 (free cortisol half-life), -0.37 (y-intercept), and 0.04 ([albumin]) (all P<0.001). For free cortisol half-life (descriptive model), STBs were 0.98 ([CBG]), 0.73 (free cortisol half-life), -0.78 (y-intercept), and 0.11 [albumin]) (all P<0.001). We conclude that the conventional descriptive model for estimation of cortisol has significant limitations, including inaccuracy and systematic bias related to the influence of CBG concentration on half-life estimates. By inference, a similar bias confounds interpretation of the half-life obtained using conventional single-compartment model of other hormones associated with high-affinity serum binding proteins. References: (1) Perogamvros et al. Clin Endo 2011;74:30-36, (2) Keenan et al. Am J Physiol Endocrinol Metab 2004;287:E652-E661 (3) Dorin et al., J Endocrinol Soc 2017 July;1(7):945-56.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.