Private well water systems in rural areas that are improperly maintained will result in poor drinking water quality, loss of water supply, and pose human health risk. The purpose of this study was to investigate the occurrence of fecal indicator bacteria (FIB) and opportunistic pathogens in private well water in rural areas surrounding New Orleans, Lousiana. Our results confirmed the ubiquitous nature of Legionella (86.7%) and mycobacteria (68.1%) in private well water in the researched area, with gene concentration ranged from 0.60 to 5.53 and 0.67 to 5.95 Log10 of GC/100 mL, respectively. Naegleria fowleri target sequence was detected in 16.8% and Escherichia coli was detected in 43.4% of the water samples. Total coliform, as well as Legionella and mycobacteria genetic markers' concentrations were significantly reduced by 3-minute flushing. Next-generation sequencing (NGS) data indicated that the abundance of bacterial species was significantly increased in water collected in kitchens compared with samples from wells directly. This study provided integrated knowledge on the persistence of pathogenic organisms in private well water. Further study is needed to explore the presence of clinical species of those opportunistic pathogens in private well water systems to elucidate the health risk.
The occurrence of amoeba, Naegleria fowleri, in sediment samples from Lake Pontchartrain in Louisiana was investigated. This amoeba is pathogenic and can cause primary amoebic meningoencephalitis. In this study, quantitative polymerase chain reaction methods were used to test for the prevalence of Naegleria fowleri, HF183, and E. coli. N. fowleri was detected in 51.25% of our sediment samples. Illumina sequencing of sediment samples revealed ten different phyla, with Cyanobacteria being the most predominant at sites that generally presented with the highest median N. fowleri concentrations. N. fowleri was however strongly negatively correlated with HF183 (r = −0.859, p < 0.001). Whenever sediment E. coli concentrations were below 1.54 Log GC/g, there was only a 37.5% chance that N. fowleri would be detected in the same sample. When sediment E. coli concentrations exceeded 2.77 Log GC/g, the chances of detecting N. fowleri in the same sample increased to 90%, potentially suggesting predatory activity by the amoeba. The effect of temperature was observed to be different in relation to observed N. fowleri concentrations and detection rates. Although sediment samples collected during periods of higher temperatures had significantly lower mean N. fowleri concentrations (2.7 Log GC/g) compared to those collected at lower temperatures (3.7 Log GC/g, t(39) = 4.167, p < 0.001), higher N. fowleri detection rates in the overall samples were observed at higher temperatures (>19.1 °C) than at lower temperatures (<19.1 °C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.