To determine the effect of age on quadriceps muscle blood flow (QMBF), leg vascular resistance (LVR), and maximum oxygen uptake (QVO2 max), a thermal dilution technique was used in conjunction with arterial and venous femoral blood sampling in six sedentary young (19.8 +/- 1.3 yr) and six sedentary old (66.5 +/- 2.1 yr) males during incremental knee extensor exercise (KE). Young and old attained a similar maximal KE work rate (WRmax) (young: 25.2 +/- 2.1 and old: 24.1 +/- 4 W) and QVO2 max (young: 0.52 +/- 0.03 and old: 0.42 +/- 0.05 l/min). QMBF during KE was lower in old subjects by approximately 500 ml/min across all work rates, with old subjects demonstrating a significantly lower QMBF/W (old: 174 +/- 20 and young: 239 +/- 46 ml. min-1. W-1). Although the vasodilatory response to incremental KE was approximately 142% greater in the old (young: 0.0019 and old: 0.0046 mmHg. min. ml-1. W-1), consistently elevated leg vascular resistance (LVR) in the old, approximately 80% higher LVR in the old at 50% WR and approximately 40% higher LVR in the old at WRmax (young: 44.1 +/- 3.6 and old: 31.0 +/- 1.7 mmHg. min. ml-1), dictated that during incremental KE the LVR of the old subjects was never less than that of the young subjects. Pulse pressures, indicative of arterial vessel compliance, were approximately 36% higher in the old subjects across all work rates. In conclusion, well-matched sedentary young and old subjects with similar quadriceps muscle mass achieved a similar WRmax and QVO2 max during incremental KE. The old subjects, despite a reduced QMBF, had a greater vasodilatory response to incremental KE. Given that small muscle mass exercise, such as KE, utilizes only a fraction of maximal cardiac output, peripheral mechanisms such as consistently elevated leg vascular resistance and greater pulse pressures appear to be responsible for reduced blood flow persisting throughout graded KE in the old subjects.
Background The pathogenic mechanisms underlying pulmonary arterial hypertension (PAH) due to schistosomiasis, one of the most common causes of pulmonary hypertension (PH) worldwide, remains unknown. We hypothesized that TGF-β signaling as a consequence of Th2 inflammation is critical for the pathogenesis of this disease. Methods and Results Mice sensitized and subsequently challenged with S. mansoni eggs developed PH associated with an increase in right ventricular systolic pressure (RVSP), thickening of the pulmonary artery media, and right ventricular hypertrophy. Rho-kinase dependent vasoconstriction accounted for about 60% of the increase in RVSP. The pulmonary vascular remodeling and PH were dependent on increased TGF-β signaling, as pharmacological blockade of the TGF-β ligand and receptor, and mice lacking Smad3 were significantly protected from Schistosoma-induced PH. Blockade of TGF-β signaling also led to a decrease in IL4 and IL13 concentrations, which drive the Th2 responses characteristic of schistosomiasis lung pathology. Lungs of patients with schistosomiasis-associated PAH have evidence of TGF-β signaling in their remodeled pulmonary arteries. Conclusions Experimental S. mansoni-induced pulmonary vascular disease relies on canonical TGF-β signaling.
We measured leg blood flow (LBF), drew arterial-venous (A-V) blood samples, and calculated muscle O(2) consumption (VO(2)) during incremental cycle ergometry exercise [15, 30, and 99 W and maximal effort (maximal work rate, WR(max))] in nine sedentary young (20 +/- 1 yr) and nine sedentary old (70 +/- 2 yr) males. LBF was preserved in the old subjects at 15 and 30 W. However, at 99 W and at WR(max), leg vascular conductance was attenuated because of a reduced LBF (young: 4.1 +/- 0.2 l/min and old: 3.1 +/- 0.3 l/min) and an elevated mean arterial blood pressure (young: 112 +/- 3 mmHg and old: 132 +/- 3 mmHg) in the old subjects. Leg A-V O(2) difference changed little with increasing WR in the old group but was elevated compared with the young subjects. Muscle maximal VO(2) and cycle WR(max) were significantly lower in the old subjects (young: 0.8 +/- 0.05 l/min and 193 +/- 7 W; old: 0.5 +/- 0.03 l/min and 117 +/- 10 W). The submaximally unchanged and maximally reduced cardiac output associated with aging coupled with its potential maldistribution are candidates for the limited LBF during moderate to heavy exercise in older sedentary subjects.
To further explore the limitations to maximal O(2) consumption (.VO(2 max)) in exercise-trained skeletal muscle, six cyclists performed graded knee-extensor exercise to maximum work rate (WR(max)) in hypoxia (12% O(2)), hyperoxia (100% O(2)), and hyperoxia + femoral arterial infusion of adenosine (ADO) at 80% WR(max). Arterial and venous blood sampling and thermodilution blood flow measurements allowed the determination of muscle O(2) delivery and O(2) consumption. At WR(max), O(2) delivery rose progressively from hypoxia (1.0 +/- 0.04 l/min) to hyperoxia (1.20 +/- 0.09 l/min) and hyperoxia + ADO (1.33 +/- 0.05 l/min). Leg .VO(2 max) varied with O(2) availability (0.81 +/- 0.05 and 0.97 +/- 0.07 l/min in hypoxia and hyperoxia, respectively) but did not improve with ADO-mediated vasodilation (0.80 +/- 0.09 l/min in hyperoxia + ADO). Although a vasodilatory reserve in the maximally working quadriceps muscle group may have been evidenced by increased leg vascular conductance after ADO infusion beyond that observed in hyperoxia (increased blood flow but no change in blood pressure), we recognize the possibility that the ADO infusion may have provoked vasodilation in nonexercising tissue of this limb. Together, these findings imply that maximally exercising skeletal muscle may maintain some vasodilatory capacity, but the lack of improvement in leg .VO(2 max) with significantly increased O(2) delivery (hyperoxia + ADO), with a degree of uncertainty as to the site of this dilation, suggests an ADO-induced mismatch between O(2) consumption and blood flow in the exercising limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.