It has been suggested that the concentrations of tamoxifen and its demethylated metabolites increase with age. We measured the serum concentrations of the active tamoxifen metabolites, 4OHtamoxifen (4OHtam), 4-hydroxy-N-desmethyltamoxifen (4OHNDtam, Endoxifen), tamoxifen and its demethylated metabolites. Their relations to age were examined. One hundred fifty-one estrogen receptor and/or progesterone receptor positive breast cancer patients were included. Their median (range) age was 57 (32–85) years. Due to the long half-life of tamoxifen, only patients treated with tamoxifen for at least 80 days were included in the study in order to insure that the patients had reached steady-state drug levels. Tamoxifen and its metabolites were measured by liquid chromatography-tandem mass spectrometry. Their serum concentrations were related to the age of the patients. To circumvent effects of cytochrome (CYP) 2D6 polymorphisms we also examined these correlations exclusively in homozygous extensive metabolizers. The concentrations of 4OHNDtam, tamoxifen, NDtam (N-desmethyltamoxifen), and NDDtam (N-desdimethyltamoxifen) were positively correlated to age (n = 151, p = 0.017, 0.045, 0.011, and 0.001 respectively). When exclusively studying the CYP2D6 homozygous extensive metabolizers (n = 86) the correlation between 4OHNDtam and age increased (p = 0.008). Up to tenfold inter-patient variation in the serum concentrations was observed. The median (inter-patient range) concentration of 4OHNDtam in the age groups 30–49, 50–69, and >69 years were 65 (24–89), 116 (25–141), and 159 (26–185) ng/ml, respectively. We conclude that the serum concentrations of 4OHNDtam (endoxifen), tamoxifen, and its demethylated metabolites increase with age during steady-state tamoxifen treatment. This may represent an additional explanation why studies on the effects of CYP2D6 polymorphisms on outcome in tamoxifen-treated breast cancer patients have been inconsistent. The observed high inter-patient range in serum concentrations of tamoxifen and its metabolites, especially in the highest age group, suggest that use of therapeutic monitoring of tamoxifen and its metabolites is warranted.
Purpose: Both therapeutic and adverse effects of tamoxifen may be related to its tissue concentrations. We investigated concentrations of tamoxifen, 4-hydroxytamoxifen, Ndesmethyltamoxifen, and N-didesmethyltamoxifen in serum, normal breast, and breast cancer tissues during conventional dosage and two low-dose regimens. Furthermore we studied tamoxifen effects on the cancer proliferation marker Ki-67, and on sex hormone-binding globulin (SHBG).Experimental Design: From September 1999 to August 2001, 120 breast cancer patients were randomized to 20-, 5-, or 1-mg tamoxifen daily. We measured serum and tissue concentrations of tamoxifen and three metabolites after 28 days of treatment, and the changes between baseline and post-treatment levels of SHBG and Ki-67.Results: The median (range) tamoxifen concentrations (ng/ml) at doses of 1, 5, and 20 mg daily (n ؍ 38, 37, and 36) were 7.5 (2.9 -120.9), 25.2 (1.9 -180.9), and 83.6 (8.7-134.4) in serum, and 78.2 (35.9 -184), 272.3 (122-641), and 744.4 (208.6 -2556) in breast cancer tissue, respectively. Tamoxifen levels followed a dose-concentration relationship. The concentrations of tamoxifen and metabolites were related to each other. Serum and tissue concentrations of tamoxifen were associated with corresponding changes of SHBG levels, whereas changes of Ki-67 levels were not related. Conclusions:Estrogen agonistic effects of tamoxifen on SHBG decreased with lower dosage, whereas tamoxifen effects on Ki-67 expression did not change. This together with a >10-fold variation in serum tamoxifen concentrations and a serum to tissue concentration relationship suggest that tamoxifen treatment may be improved by administration of lower doses and therapeutic drug monitoring.
CYP2D6 and SULT1A1 genotypes may partly explain the wide inter-individual variations in the serum levels of tamoxifen and its metabolites. We propose that therapeutic drug monitoring should be included in studies linking CYP2D6 and SULT1A1 genotypes to clinical outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.