IMPORTANCE Therapies that improve survival in critically ill patients with coronavirus disease 2019 (COVID-19) are needed. Tocilizumab, a monoclonal antibody against the interleukin 6 receptor, may counteract the inflammatory cytokine release syndrome in patients with severe COVID-19 illness. OBJECTIVE To test whether tocilizumab decreases mortality in this population. DESIGN, SETTING, AND PARTICIPANTS The data for this study were derived from a multicenter cohort study of 4485 adults with COVID-19 admitted to participating intensive care units (ICUs) at 68 hospitals across the US from March 4 to May 10, 2020. Critically ill adults with COVID-19 were categorized according to whether they received or did not receive tocilizumab in the first 2 days of admission to the ICU. Data were collected retrospectively until June 12, 2020. A Cox regression model with inverse probability weighting was used to adjust for confounding. EXPOSURES Treatment with tocilizumab in the first 2 days of ICU admission. MAIN OUTCOMES AND MEASURES Time to death, compared via hazard ratios (HRs), and 30-day mortality, compared via risk differences. RESULTS Among the 3924 patients included in the analysis (2464 male [62.8%]; median age, 62 [interquartile range {IQR}, 52-71] years), 433 (11.0%) received tocilizumab in the first 2 days of ICU admission. Patients treated with tocilizumab were younger (median age, 58 [IQR, 48-65] vs 63 [IQR, 52-72] years) and had a higher prevalence of hypoxemia on ICU admission (205 of 433 [47.3%] vs 1322 of 3491 [37.9%] with mechanical ventilation and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen of <200 mm Hg) than patients not treated with tocilizumab. After applying inverse probability weighting, baseline and severity-of-illness characteristics were well balanced between groups. A total of 1544 patients (39.3%) died, including 125 (28.9%) treated with tocilizumab and 1419 (40.6%) not treated with tocilizumab. In the primary analysis, during a median follow-up of 27 (IQR, 14-37) days, patients treated with tocilizumab had a lower risk of death compared with those not treated with tocilizumab (HR, 0.71; 95% CI, 0.56-0.92). The estimated 30-day mortality was 27.5% (95% CI, 21.2%-33.8%) in the tocilizumab-treated patients and 37.1% (95% CI, 35.5%-38.7%) in the non-tocilizumab-treated patients (risk difference, 9.6%; 95% CI, 3.1%-16.0%). CONCLUSIONS AND RELEVANCE Among critically ill patients with COVID-19 in this cohort study, the risk of in-hospital mortality in this study was lower in patients treated with tocilizumab in the first 2 days of ICU admission compared with patients whose treatment did not include early use of tocilizumab. However, the findings may be susceptible to unmeasured confounding, and further research from randomized clinical trials is needed.
One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive-negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5-1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.
Skeletal muscle size is regulated by anabolic (hypertrophic) and catabolic (atrophic) processes. We first characterized molecular markers of both hypertrophy and atrophy and identified a small subset of genes that are inversely regulated in these two settings (e.g. upregulated by an inducer of hypertrophy, insulin-like growth factor-1 (IGF-1), and down-regulated by a mediator of atrophy, dexamethasone). The genes identified as being inversely regulated by atrophy, as opposed to hypertrophy, include the E3 ubiquitin ligase MAFbx (also known as atrogin-1). We next sought to investigate the mechanism by which IGF-1 inversely regulates these markers, and found that the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/ mTOR) pathway, which we had previously characterized as being critical for hypertrophy, is also required to be active in order for IGF-1-mediated transcriptional changes to occur. We had recently demonstrated that the IGF1/PI3K/Akt pathway can block dexamethasoneinduced up-regulation of the atrophy-induced ubiquitin ligases MuRF1 and MAFbx by blocking nuclear translocation of a FOXO transcription factor. In the current study we demonstrate that an additional step of IGF1 transcriptional regulation occurs downstream of mTOR, which is independent of FOXO. Thus both the Akt/FOXO and the Akt/mTOR pathways are required for the transcriptional changes induced by IGF-1.Skeletal muscle mass and fiber size is regulated in response to changes in workload, activity, conditions such as AIDS, cancer, and aging, and by cachectic glucocorticoids such as dexamethasone (1-3). An increase in adult muscle mass and fiber size is called "hypertrophy" and is associated with increased protein synthesis (4). A decrease in mass, called "atrophy," is characterized by enhanced protein degradation (3,5,6).Hypertrophy in adult skeletal muscle is accompanied by the increased expression of insulin-like growth factor-1 (IGF-1) 1 (4, 7). When IGF-1 was overexpressed in the skeletal muscle of transgenic mice an increase in muscle size resulted (8, 9). Furthermore, addition of IGF-1 in vitro to differentiated muscle cells promotes myotube hypertrophy (10 -12), supporting the idea that IGF-1 is sufficient to induce hypertrophy. The binding of IGF-1 to its receptor triggers the activation of phosphatidylinositol 3-kinase (PI3K). PI3K phosphorylates the membrane phospholipid phosphatidylinositol 4,5-bisphosphate to produce phosphatidylinositol 3,4,5-trisphosphate (13, 14), creating a lipid binding site on the cell membrane for the serine/threonine kinase Akt (also called Akt1 and PKB, for protein kinase B) (15-17). The subsequent translocation of Akt to the membrane facilitates its phosphorylation and activation by the kinase PDK-1 (14, 18, 19). Cell growth and survival in a variety of tissues and cell types in response to IGF-1, insulin, and other growth factors is critically mediated by Akt (14, 19). Direct and indirect targets downstream of Akt include the mammalian target of rapamycin (mTOR), p70S6K, and PHAS-1...
The angiopoietins have recently joined the members of the vascular endothelial growth factor family as the only known growth factors largely specific for vascular endothelium. The angiopoietins include a naturally occurring agonist, angiopoietin-1, as well as a naturally occurring antagonist, angiopoietin-2, both of which act by means of the Tie2 receptor. We now report our attempts to use homologybased cloning approaches to identify new members of the angiopoietin family. These efforts have led to the identification of two new angiopoietins, angiopoietin-3 in mouse and angiopoietin-4 in human; we have also identified several more distantly related sequences that do not seem to be true angiopoietins, in that they do not bind to the Tie receptors. Although angiopoietin-3 and angiopoietin-4 are strikingly more structurally diverged from each other than are the mouse and human versions of angiopoietin-1 and angiopoietin-2, they appear to represent the mouse and human counterparts of the same gene locus, as revealed in our chromosomal localization studies of all of the angiopoietins in mouse and human. The structural divergence of angiopoietin-3 and angiopoietin-4 appears to underlie diverging functions of these counterparts. Angiopoietin-3 and angiopoietin-4 have very different distributions in their respective species, and angiopoietin-3 appears to act as an antagonist, whereas angiopoietin-4 appears to function as an agonist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.